Analysis on Hybrid Dominance-Based Rough Set Parameterization Using Private Financial Initiative Unitary Charges Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50014745" target="_blank" >RIV/62690094:18450/18:50014745 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-75417-8_30" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-75417-8_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-75417-8_30" target="_blank" >10.1007/978-3-319-75417-8_30</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis on Hybrid Dominance-Based Rough Set Parameterization Using Private Financial Initiative Unitary Charges Data
Popis výsledku v původním jazyce
This paper evaluates the capability of the hybrid parameter reduction approach in handling private financial initiative (PFI) unitary charges data to increase the classification performance. The objective of this study is to analyse the performance of the proposed hybrid parameter reduction approach in assisting the neural network classifier to classify complex data sets that might contain uncertain and inconsistent problems. The proposed hybrid parameter reduction approach consists of several methods that will be executed during the data analysis process. Slicing technique and dominance-based rough set approach (DRSA) are the two techniques that play important roles in the proposed parameter reduction process. In order, to analyse the performance of the proposed work, the PFI data that covers all regions in Malaysia is applied in the experimental works. Besides, several standard data sets have also been used to validate the obtained results. The results reveal that the hybrid approach has successfully assisted the classifier in the classification process.
Název v anglickém jazyce
Analysis on Hybrid Dominance-Based Rough Set Parameterization Using Private Financial Initiative Unitary Charges Data
Popis výsledku anglicky
This paper evaluates the capability of the hybrid parameter reduction approach in handling private financial initiative (PFI) unitary charges data to increase the classification performance. The objective of this study is to analyse the performance of the proposed hybrid parameter reduction approach in assisting the neural network classifier to classify complex data sets that might contain uncertain and inconsistent problems. The proposed hybrid parameter reduction approach consists of several methods that will be executed during the data analysis process. Slicing technique and dominance-based rough set approach (DRSA) are the two techniques that play important roles in the proposed parameter reduction process. In order, to analyse the performance of the proposed work, the PFI data that covers all regions in Malaysia is applied in the experimental works. Besides, several standard data sets have also been used to validate the obtained results. The results reveal that the hybrid approach has successfully assisted the classifier in the classification process.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT I
ISBN
978-3-319-75417-8
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
11
Strana od-do
318-328
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Dong Hoi
Datum konání akce
19. 3. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000432717700030