Improving the classification performance on imbalanced data sets via new hybrid parameterisation model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50016456" target="_blank" >RIV/62690094:18450/21:50016456 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1319157818312229" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1319157818312229</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jksuci.2019.04.009" target="_blank" >10.1016/j.jksuci.2019.04.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving the classification performance on imbalanced data sets via new hybrid parameterisation model
Popis výsledku v původním jazyce
The aim of this work is to analyse the performance of the new proposed hybrid parameterisation model in handling problematic data. Three types of problematic data will be highlighted in this paper: i) big data set, ii) uncertain and inconsistent data set and iii) imbalanced data set. The proposed hybrid model is an integration of three main phases which consist of the data decomposition, parameter reduction and parameter selection phases. Three main methods, which are soft set and rough set theories, were implemented to reduce and to select the optimised parameter set, while a neural network was used to classify the optimised data set. This proposed model can process a data set that might contain uncertain, inconsistent and imbalanced data. Therefore, one additional phase, data decomposition, was introduced and executed after the pre-processing task was completed in order to manage the big data issue. Imbalanced data sets were used to evaluate the capability of the proposed hybrid model in handling problematic data. The experimental results demonstrate that the proposed hybrid model has the potential to be implemented with any type of data set in a classification task, especially with complex data sets. © 2019 The Authors
Název v anglickém jazyce
Improving the classification performance on imbalanced data sets via new hybrid parameterisation model
Popis výsledku anglicky
The aim of this work is to analyse the performance of the new proposed hybrid parameterisation model in handling problematic data. Three types of problematic data will be highlighted in this paper: i) big data set, ii) uncertain and inconsistent data set and iii) imbalanced data set. The proposed hybrid model is an integration of three main phases which consist of the data decomposition, parameter reduction and parameter selection phases. Three main methods, which are soft set and rough set theories, were implemented to reduce and to select the optimised parameter set, while a neural network was used to classify the optimised data set. This proposed model can process a data set that might contain uncertain, inconsistent and imbalanced data. Therefore, one additional phase, data decomposition, was introduced and executed after the pre-processing task was completed in order to manage the big data issue. Imbalanced data sets were used to evaluate the capability of the proposed hybrid model in handling problematic data. The experimental results demonstrate that the proposed hybrid model has the potential to be implemented with any type of data set in a classification task, especially with complex data sets. © 2019 The Authors
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of King Saud university - computer and information sciences
ISSN
1319-1578
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
787-797
Kód UT WoS článku
000688355700003
EID výsledku v databázi Scopus
2-s2.0-85065134291