Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An analysis on new hybrid parameter selection model performance over big data set

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017065" target="_blank" >RIV/62690094:18450/20:50017065 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0950705119306628" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0950705119306628</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.knosys.2019.105441" target="_blank" >10.1016/j.knosys.2019.105441</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An analysis on new hybrid parameter selection model performance over big data set

  • Popis výsledku v původním jazyce

    Parameter selection or attribute selection is one of the crucial tasks in the data analysis process. Incorrect selection of the important attribute might generate imprecise or event for a wrong decision. It is an advantage if the decision-maker could select and apply the best model that helps in identifying the best-optimized attribute set — in the decision analysis process. Recently, many data scientists from various application areas are attracted to investigate and analyze the advantages and disadvantages of big data. One of the issues is, analyzing large volumes and variety of data in a big data environment is very challenging to the data scientists when there is a lack of a suitable model or no appropriate model to be implemented and used as a guideline. Hence, this paper proposes an alternative parameterization model that is able to generate the most optimized attribute set without requiring a high cost to learn, to use, and to maintain. The model is based on two integrated models that are combined with correlation-based feature selection, best-first search algorithm, soft set, and rough set theories which were compliments to each other as a parameter selection method. Experimental have shown that the proposed model has significantly shown as an alternative model in a big data analysis process. © 2020 The Authors

  • Název v anglickém jazyce

    An analysis on new hybrid parameter selection model performance over big data set

  • Popis výsledku anglicky

    Parameter selection or attribute selection is one of the crucial tasks in the data analysis process. Incorrect selection of the important attribute might generate imprecise or event for a wrong decision. It is an advantage if the decision-maker could select and apply the best model that helps in identifying the best-optimized attribute set — in the decision analysis process. Recently, many data scientists from various application areas are attracted to investigate and analyze the advantages and disadvantages of big data. One of the issues is, analyzing large volumes and variety of data in a big data environment is very challenging to the data scientists when there is a lack of a suitable model or no appropriate model to be implemented and used as a guideline. Hence, this paper proposes an alternative parameterization model that is able to generate the most optimized attribute set without requiring a high cost to learn, to use, and to maintain. The model is based on two integrated models that are combined with correlation-based feature selection, best-first search algorithm, soft set, and rough set theories which were compliments to each other as a parameter selection method. Experimental have shown that the proposed model has significantly shown as an alternative model in a big data analysis process. © 2020 The Authors

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Knowledge-based systems

  • ISSN

    0950-7051

  • e-ISSN

  • Svazek periodika

    192

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    "Article Number: 105441"

  • Kód UT WoS článku

    000519335400041

  • EID výsledku v databázi Scopus

    2-s2.0-85078493275