An analysis on new hybrid parameter selection model performance over big data set
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017065" target="_blank" >RIV/62690094:18450/20:50017065 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0950705119306628" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0950705119306628</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.knosys.2019.105441" target="_blank" >10.1016/j.knosys.2019.105441</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An analysis on new hybrid parameter selection model performance over big data set
Popis výsledku v původním jazyce
Parameter selection or attribute selection is one of the crucial tasks in the data analysis process. Incorrect selection of the important attribute might generate imprecise or event for a wrong decision. It is an advantage if the decision-maker could select and apply the best model that helps in identifying the best-optimized attribute set — in the decision analysis process. Recently, many data scientists from various application areas are attracted to investigate and analyze the advantages and disadvantages of big data. One of the issues is, analyzing large volumes and variety of data in a big data environment is very challenging to the data scientists when there is a lack of a suitable model or no appropriate model to be implemented and used as a guideline. Hence, this paper proposes an alternative parameterization model that is able to generate the most optimized attribute set without requiring a high cost to learn, to use, and to maintain. The model is based on two integrated models that are combined with correlation-based feature selection, best-first search algorithm, soft set, and rough set theories which were compliments to each other as a parameter selection method. Experimental have shown that the proposed model has significantly shown as an alternative model in a big data analysis process. © 2020 The Authors
Název v anglickém jazyce
An analysis on new hybrid parameter selection model performance over big data set
Popis výsledku anglicky
Parameter selection or attribute selection is one of the crucial tasks in the data analysis process. Incorrect selection of the important attribute might generate imprecise or event for a wrong decision. It is an advantage if the decision-maker could select and apply the best model that helps in identifying the best-optimized attribute set — in the decision analysis process. Recently, many data scientists from various application areas are attracted to investigate and analyze the advantages and disadvantages of big data. One of the issues is, analyzing large volumes and variety of data in a big data environment is very challenging to the data scientists when there is a lack of a suitable model or no appropriate model to be implemented and used as a guideline. Hence, this paper proposes an alternative parameterization model that is able to generate the most optimized attribute set without requiring a high cost to learn, to use, and to maintain. The model is based on two integrated models that are combined with correlation-based feature selection, best-first search algorithm, soft set, and rough set theories which were compliments to each other as a parameter selection method. Experimental have shown that the proposed model has significantly shown as an alternative model in a big data analysis process. © 2020 The Authors
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Knowledge-based systems
ISSN
0950-7051
e-ISSN
—
Svazek periodika
192
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
"Article Number: 105441"
Kód UT WoS článku
000519335400041
EID výsledku v databázi Scopus
2-s2.0-85078493275