Differential Evolution Classifier with Optimized Distance Measures from a Pool of Distances
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F12%3A86085128" target="_blank" >RIV/61989100:27740/12:86085128 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/CEC.2012.6252889" target="_blank" >http://dx.doi.org/10.1109/CEC.2012.6252889</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC.2012.6252889" target="_blank" >10.1109/CEC.2012.6252889</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential Evolution Classifier with Optimized Distance Measures from a Pool of Distances
Popis výsledku v původním jazyce
In this article we propose a differential evolution based nearest prototype classifier with extension to selecting the applied distance measure from a pool of alternative measures optimally for the particular data set at hand. The proposed method extendsthe earlier differential evolution based nearest prototype classifier by extending the optimization process to cover also the selection of distance measure instead of optimizing only the parameters related with a preselected and fixed distance measure.Now the optimization process is seeking also for the best distance measure providing the highest classification accuracy over the selected data set. It has been clear for some time that in classification, the usual euclidean distance measure is sometimesnot the best possible choice. Still usually not much has been done for it, and in many cases where some consideration to this problem is given, there has only been testing with a couple of alternative distance measures to find which one
Název v anglickém jazyce
Differential Evolution Classifier with Optimized Distance Measures from a Pool of Distances
Popis výsledku anglicky
In this article we propose a differential evolution based nearest prototype classifier with extension to selecting the applied distance measure from a pool of alternative measures optimally for the particular data set at hand. The proposed method extendsthe earlier differential evolution based nearest prototype classifier by extending the optimization process to cover also the selection of distance measure instead of optimizing only the parameters related with a preselected and fixed distance measure.Now the optimization process is seeking also for the best distance measure providing the highest classification accuracy over the selected data set. It has been clear for some time that in classification, the usual euclidean distance measure is sometimesnot the best possible choice. Still usually not much has been done for it, and in many cases where some consideration to this problem is given, there has only been testing with a couple of alternative distance measures to find which one
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2012 IEEE Congress on Evolutionary Computation (CEC), 2012
ISBN
978-1-4673-1509-8
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Brisbane
Datum konání akce
10. 6. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000312859300034