Optimized distance metrics for differential evolution based nearest prototype classifier
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F12%3A86085129" target="_blank" >RIV/61989100:27740/12:86085129 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimized distance metrics for differential evolution based nearest prototype classifier
Popis výsledku v původním jazyce
In this article, we introduce a differential evolution based classifier with extension for selecting automatically the applied distance measure from a predefined pool of alternative distances measures to suit optimally for classifying the particular dataset at hand. The proposed method extends the earlier differential evolution based nearest prototype classifier by extending the optimization process by optimizing not only the required parameters for distance measures, but also optimizing the selectionof the distance measure it self in order to find the best possible distance measure for the particular data set at hand. It has been clear for some time that in classification, usual euclidean distance is often not the best choice, and the optimal distance measure depends on the particular properties of the data sets to be classified. So far solving this issue have been subject to a limited attention in the literature. In cases where some consideration to this is problem is given, there
Název v anglickém jazyce
Optimized distance metrics for differential evolution based nearest prototype classifier
Popis výsledku anglicky
In this article, we introduce a differential evolution based classifier with extension for selecting automatically the applied distance measure from a predefined pool of alternative distances measures to suit optimally for classifying the particular dataset at hand. The proposed method extends the earlier differential evolution based nearest prototype classifier by extending the optimization process by optimizing not only the required parameters for distance measures, but also optimizing the selectionof the distance measure it self in order to find the best possible distance measure for the particular data set at hand. It has been clear for some time that in classification, usual euclidean distance is often not the best choice, and the optimal distance measure depends on the particular properties of the data sets to be classified. So far solving this issue have been subject to a limited attention in the literature. In cases where some consideration to this is problem is given, there
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
10564-10570
Kód UT WoS článku
000305863300024
EID výsledku v databázi Scopus
—