Detection of Overlapping Speech using a Convolutional Neural Network: First Experiments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952729" target="_blank" >RIV/49777513:23520/18:43952729 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11025/29824" target="_blank" >http://hdl.handle.net/11025/29824</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of Overlapping Speech using a Convolutional Neural Network: First Experiments
Popis výsledku v původním jazyce
Many speech processing applications, such as speaker diarization and speech recognition, have problems with overlapping speech, i.e. intervals in which multiple speakers are talking simultaneously. This happens particularly often in spontaneous conversations, where speakers may regularly interrupt each other or interject short utterances while the original speaker keeps talking. Detecting such occurrences can help improve the performance of the impacted systems. However, this is still an actively researched task, which has not yet been fully solved. In this work, I describe my initial experiments in using a convolutional neural network (CNN) to detect overlapping speech in an artificial dataset created for the purpose.
Název v anglickém jazyce
Detection of Overlapping Speech using a Convolutional Neural Network: First Experiments
Popis výsledku anglicky
Many speech processing applications, such as speaker diarization and speech recognition, have problems with overlapping speech, i.e. intervals in which multiple speakers are talking simultaneously. This happens particularly often in spontaneous conversations, where speakers may regularly interrupt each other or interject short utterances while the original speaker keeps talking. Detecting such occurrences can help improve the performance of the impacted systems. However, this is still an actively researched task, which has not yet been fully solved. In this work, I describe my initial experiments in using a convolutional neural network (CNN) to detect overlapping speech in an artificial dataset created for the purpose.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů