Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improvements in 3D Hand Pose Estimation Using Synthetic Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952762" target="_blank" >RIV/49777513:23520/18:43952762 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-99582-3_12" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-99582-3_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-99582-3_12" target="_blank" >10.1007/978-3-319-99582-3_12</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improvements in 3D Hand Pose Estimation Using Synthetic Data

  • Popis výsledku v původním jazyce

    The neural networks currently outperform earlier approaches to the hand pose estimation. However, to achieve the superior results a large amount of the appropriate training data is desperately needed. But the acquisition of the real hand pose data is a time and resources consuming process. One of the possible solutions uses the synthetic training data. We introduce a method to generate synthetic depth images of the hand closely matching the real images. We extend the approach of the previous works to the modeling of the depth image data using the 3D scan of the subject’s hand and the hand pose prior given by the real data distribution. We found out that combining them with the real training data can result in a better performance.

  • Název v anglickém jazyce

    Improvements in 3D Hand Pose Estimation Using Synthetic Data

  • Popis výsledku anglicky

    The neural networks currently outperform earlier approaches to the hand pose estimation. However, to achieve the superior results a large amount of the appropriate training data is desperately needed. But the acquisition of the real hand pose data is a time and resources consuming process. One of the possible solutions uses the synthetic training data. We introduce a method to generate synthetic depth images of the hand closely matching the real images. We extend the approach of the previous works to the modeling of the depth image data using the 3D scan of the subject’s hand and the hand pose prior given by the real data distribution. We found out that combining them with the real training data can result in a better performance.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Umělá inteligence a uvažování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Interactive Collaborative Robotics Third International Conference, ICR 2018 Leipzig, Germany, September 18–22, 2018 Proceedings

  • ISBN

    978-3-319-99581-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    11

  • Strana od-do

    105-115

  • Název nakladatele

    Springer Nature Switzerland AG

  • Místo vydání

    Cham

  • Místo konání akce

    Leipzig, Germany

  • Datum konání akce

    18. 9. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku