Reconstruction of Cross-Correlations with Constant Number of Deterministic Samples
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43954763" target="_blank" >RIV/49777513:23520/18:43954763 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.23919/ICIF.2018.8455221" target="_blank" >http://dx.doi.org/10.23919/ICIF.2018.8455221</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/ICIF.2018.8455221" target="_blank" >10.23919/ICIF.2018.8455221</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reconstruction of Cross-Correlations with Constant Number of Deterministic Samples
Popis výsledku v původním jazyce
Optimal fusion of estimates that are computed in a distributed fashion is a challenging task. In general, the sensor nodes cannot keep track of the cross-correlations required to fuse estimates optimally. In this paper, a novel technique is presented that provides the means to reconstruct the required correlation structure. For this purpose, each node computes a set of deterministic samples that provides all the information required to reassemble the cross-covariance matrix for each pair of estimates. As the number of samples is increasing over time, a method to reduce the size of the sample set is presented and studied. In doing so, communication expenses can be reduced significantly, but approximation errors are possibly introduced by neglecting past correlation terms. In order to keep approximation errors at a minimum, an appropriate set size can be determined and a trade-off between communication expenses and estimation quality can be found.
Název v anglickém jazyce
Reconstruction of Cross-Correlations with Constant Number of Deterministic Samples
Popis výsledku anglicky
Optimal fusion of estimates that are computed in a distributed fashion is a challenging task. In general, the sensor nodes cannot keep track of the cross-correlations required to fuse estimates optimally. In this paper, a novel technique is presented that provides the means to reconstruct the required correlation structure. For this purpose, each node computes a set of deterministic samples that provides all the information required to reassemble the cross-covariance matrix for each pair of estimates. As the number of samples is increasing over time, a method to reduce the size of the sample set is presented and studied. In doing so, communication expenses can be reduced significantly, but approximation errors are possibly introduced by neglecting past correlation terms. In order to keep approximation errors at a minimum, an appropriate set size can be determined and a trade-off between communication expenses and estimation quality can be found.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2018 21st International Conference on Information Fusion (FUSION)
ISBN
978-0-9964527-6-2
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
1638-1645
Název nakladatele
IEEE
Místo vydání
neuveden
Místo konání akce
Cambridge, UK
Datum konání akce
10. 7. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—