Improving Word meaning representations using Wikipedia categories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43955049" target="_blank" >RIV/49777513:23520/18:43955049 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11025/34807" target="_blank" >http://hdl.handle.net/11025/34807</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2018.28.029" target="_blank" >10.14311/NNW.2018.28.029</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving Word meaning representations using Wikipedia categories
Popis výsledku v původním jazyce
In this paper we extend Skip-Gram and Continuous Bag-of-Words Distributional word representations models via global context information. We use a corpus extracted from Wikipedia, where articles are organized in a hierarchy of categories. These categories provide useful topical information about each article. We present the four new approaches, how to enrich word meaning representation with such information. We experiment with the English Wikipedia and evaluate our models on standard word similarity and word analogy datasets. Proposed models significantly outperform other word representation methods when similar size training data of similar size is used and provide similar performance compared with methods trained on much larger datasets. Our new approach shows, that increasing the amount of unlabelled data does not necessarily increase the performance of word embeddings as much as introducing the global or sub-word information, especially when training time is taken into the consideration.
Název v anglickém jazyce
Improving Word meaning representations using Wikipedia categories
Popis výsledku anglicky
In this paper we extend Skip-Gram and Continuous Bag-of-Words Distributional word representations models via global context information. We use a corpus extracted from Wikipedia, where articles are organized in a hierarchy of categories. These categories provide useful topical information about each article. We present the four new approaches, how to enrich word meaning representation with such information. We experiment with the English Wikipedia and evaluate our models on standard word similarity and word analogy datasets. Proposed models significantly outperform other word representation methods when similar size training data of similar size is used and provide similar performance compared with methods trained on much larger datasets. Our new approach shows, that increasing the amount of unlabelled data does not necessarily increase the performance of word embeddings as much as introducing the global or sub-word information, especially when training time is taken into the consideration.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
12
Strana od-do
523-534
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85061489302