Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

How intra-source imbalanced datasets impact the performance of deep learning for COVID-19 diagnosis using chest X-ray images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F23%3A43907332" target="_blank" >RIV/60076658:12310/23:43907332 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s41598-023-45368-w" target="_blank" >https://www.nature.com/articles/s41598-023-45368-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-023-45368-w" target="_blank" >10.1038/s41598-023-45368-w</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    How intra-source imbalanced datasets impact the performance of deep learning for COVID-19 diagnosis using chest X-ray images

  • Popis výsledku v původním jazyce

    Over the past decade, the use of deep learning has been widely increasing in the medical image diagnosis field. Deep learning-based methods&apos; (DLMs) performance strongly relies on training data. Therefore, researchers often focus on collecting as much data as possible from different medical facilities or developing approaches to avoid the impact of inter-category imbalance (ICI), which means a difference in data quantity among categories. However, due to the ICI within each medical facility, medical data are often isolated and acquired in different settings among medical facilities, known as the issue of intra-source imbalance (ISI) characteristic. This imbalance also impacts the performance of DLMs but receives negligible attention. In this study, we study the impact of the ISI on DLMs by comparison of the version of a deep learning model that was trained separately by an intra-source imbalanced chest X-ray (CXR) dataset and an intra-source balanced CXR dataset for COVID-19 diagnosis. The finding is that using the intra-source imbalanced dataset causes a serious training bias, although the dataset has a good inter-category balance. In contrast, the deep learning model performed a reliable diagnosis when trained on the intra-source balanced dataset. Therefore, our study reports clear evidence that the intra-source balance is vital for training data to minimize the risk of poor performance of DLMs.

  • Název v anglickém jazyce

    How intra-source imbalanced datasets impact the performance of deep learning for COVID-19 diagnosis using chest X-ray images

  • Popis výsledku anglicky

    Over the past decade, the use of deep learning has been widely increasing in the medical image diagnosis field. Deep learning-based methods&apos; (DLMs) performance strongly relies on training data. Therefore, researchers often focus on collecting as much data as possible from different medical facilities or developing approaches to avoid the impact of inter-category imbalance (ICI), which means a difference in data quantity among categories. However, due to the ICI within each medical facility, medical data are often isolated and acquired in different settings among medical facilities, known as the issue of intra-source imbalance (ISI) characteristic. This imbalance also impacts the performance of DLMs but receives negligible attention. In this study, we study the impact of the ISI on DLMs by comparison of the version of a deep learning model that was trained separately by an intra-source imbalanced chest X-ray (CXR) dataset and an intra-source balanced CXR dataset for COVID-19 diagnosis. The finding is that using the intra-source imbalanced dataset causes a serious training bias, although the dataset has a good inter-category balance. In contrast, the deep learning model performed a reliable diagnosis when trained on the intra-source balanced dataset. Therefore, our study reports clear evidence that the intra-source balance is vital for training data to minimize the risk of poor performance of DLMs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

    2045-2322

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    001102763800016

  • EID výsledku v databázi Scopus