Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On Reporting performance of binary classifiers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F17%3A39911239" target="_blank" >RIV/00216275:25530/17:39911239 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On Reporting performance of binary classifiers

  • Popis výsledku v původním jazyce

    In this contribution, the question of reporting performance of binary classifiers is opened in context of the so called class imbalance problem. The class imbalance problem arises when a dataset with a highly imbalanced class distribution is used within the training or evaluation process. In such cases, only measures, which are not biased by distribution of classes in datasets, should be used; however, they cannot be chosen arbitrarily. They should be selected so that their outcomes provide desired information; and simultaneously, they should allow a full comparison of just evaluated classifier performance along, with performances of other solutions. As is shown in this article, the dilemma with reporting performance of binary classifiers can be solved using so called class balanced measures. The class balanced measures are generally applicable means, appropriate for reporting performance of binary classifiers on balanced as well as on imbalanced datasets. On the basis of the presented pieces of information, a suggestion for a generally applicable, fully-valued, reporting of binary classifiers performance is given.

  • Název v anglickém jazyce

    On Reporting performance of binary classifiers

  • Popis výsledku anglicky

    In this contribution, the question of reporting performance of binary classifiers is opened in context of the so called class imbalance problem. The class imbalance problem arises when a dataset with a highly imbalanced class distribution is used within the training or evaluation process. In such cases, only measures, which are not biased by distribution of classes in datasets, should be used; however, they cannot be chosen arbitrarily. They should be selected so that their outcomes provide desired information; and simultaneously, they should allow a full comparison of just evaluated classifier performance along, with performances of other solutions. As is shown in this article, the dilemma with reporting performance of binary classifiers can be solved using so called class balanced measures. The class balanced measures are generally applicable means, appropriate for reporting performance of binary classifiers on balanced as well as on imbalanced datasets. On the basis of the presented pieces of information, a suggestion for a generally applicable, fully-valued, reporting of binary classifiers performance is given.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Papers of the University of Pardubice - Series D, Faculty of Economics and Administration

  • ISSN

    1211-555X

  • e-ISSN

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    12

  • Strana od-do

    181-192

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85038373945