On Model Evaluation Under Non-constant Class Imbalance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342402" target="_blank" >RIV/68407700:21230/20:00342402 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-50423-6_6" target="_blank" >https://doi.org/10.1007/978-3-030-50423-6_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-50423-6_6" target="_blank" >10.1007/978-3-030-50423-6_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Model Evaluation Under Non-constant Class Imbalance
Popis výsledku v původním jazyce
Many real-world classification problems are significantly class-imbalanced to detriment of the class of interest. The standard set of proper evaluation metrics is well-known but the usual assumption is that the test dataset imbalance equals the real-world imbalance. In practice, this assumption is often broken for various reasons. The reported results are then often too optimistic and may lead to wrong conclusions about industrial impact and suitability of proposed techniques. We introduce methods (Supplementary code related to techniques described in this paper is available at: https://github.com/CiscoCTA/nci_eval) focusing on evaluation under non-constant class imbalance. We show that not only the absolute values of commonly used metrics, but even the order of classifiers in relation to the evaluation metric used is affected by the change of the imbalance rate. Finally, we demonstrate that using subsampling in order to get a test dataset with class imbalance equal to the one observed in the wild is not necessary, and eventually can lead to significant errors in classifier’s performance estimate.
Název v anglickém jazyce
On Model Evaluation Under Non-constant Class Imbalance
Popis výsledku anglicky
Many real-world classification problems are significantly class-imbalanced to detriment of the class of interest. The standard set of proper evaluation metrics is well-known but the usual assumption is that the test dataset imbalance equals the real-world imbalance. In practice, this assumption is often broken for various reasons. The reported results are then often too optimistic and may lead to wrong conclusions about industrial impact and suitability of proposed techniques. We introduce methods (Supplementary code related to techniques described in this paper is available at: https://github.com/CiscoCTA/nci_eval) focusing on evaluation under non-constant class imbalance. We show that not only the absolute values of commonly used metrics, but even the order of classifiers in relation to the evaluation metric used is affected by the change of the imbalance rate. Finally, we demonstrate that using subsampling in order to get a test dataset with class imbalance equal to the one observed in the wild is not necessary, and eventually can lead to significant errors in classifier’s performance estimate.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computational Science - ICCS 2020
ISBN
978-3-030-50422-9
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
14
Strana od-do
74-87
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Amsterdam
Datum konání akce
3. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—