Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Metaheuristic-driven space partitioning and ensemble learning for imbalanced classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257043" target="_blank" >RIV/61989100:27240/24:10257043 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1568494624010524?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494624010524?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asoc.2024.112278" target="_blank" >10.1016/j.asoc.2024.112278</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Metaheuristic-driven space partitioning and ensemble learning for imbalanced classification

  • Popis výsledku v původním jazyce

    Imbalanced classification is a common issue in Machine Learning, particularly when misclassifying minor instances leads to significant costs. In literature, various strategies have been employed to address this problem. These include data-level, algorithm-level, cost-sensitive, and hybrid-level algorithms designed to tackle imbalanced problems. This paper aims to introduce a novel method that simultaneously enhances the ability of classification models to identify patterns more effectively and addresses imbalanced problems while minimizing alterations to the original data distribution. Our proposed framework combines ensemble learning, space partitioning, and the Synthetic Minority Oversampling Technique (SMOTE). This method decomposes the space into balanced sub-spaces and then trains an ensemble classifier based on these sub-spaces using a bagging approach. In the initial step, we develop a Space Partitioning by Metaheuristic algorithm (SPMH) to divide the space into multiple balanced subspaces. In the subsequent step, we present Imbalanced Classification by SPMH (ICSPMH) as a solution to imbalanced class problems. ICSPMH uses SPMH multiple times to divide the space into different sub-spaces, creating various sub-spaces each time. It then trains different classifiers for each portion of the space, creating an ensemble classifier through a bagging technique. To assess the performance of our proposed framework, we selected 44 well-known datasets for comparison with some state-of-the-art approaches. The results demonstrate that ICSPMH outperforms other competent methods and can potentially reduce the oversampling rate to zero. Additionally, an experiment indicated that the choice of metaheuristic algorithm in SPMH does not significantly impact the final performance. The paper also includes a correlation analysis between oversampling rate and final performance, revealing that the framework effectively eliminates imbalanced data problems with minimal changes to the original dataset. In summary, because ICSPMH applies fewer changes in data distribution and sets up local classifiers that improve classification performance, it looks like a promising method for classifying imbalanced datasets.

  • Název v anglickém jazyce

    Metaheuristic-driven space partitioning and ensemble learning for imbalanced classification

  • Popis výsledku anglicky

    Imbalanced classification is a common issue in Machine Learning, particularly when misclassifying minor instances leads to significant costs. In literature, various strategies have been employed to address this problem. These include data-level, algorithm-level, cost-sensitive, and hybrid-level algorithms designed to tackle imbalanced problems. This paper aims to introduce a novel method that simultaneously enhances the ability of classification models to identify patterns more effectively and addresses imbalanced problems while minimizing alterations to the original data distribution. Our proposed framework combines ensemble learning, space partitioning, and the Synthetic Minority Oversampling Technique (SMOTE). This method decomposes the space into balanced sub-spaces and then trains an ensemble classifier based on these sub-spaces using a bagging approach. In the initial step, we develop a Space Partitioning by Metaheuristic algorithm (SPMH) to divide the space into multiple balanced subspaces. In the subsequent step, we present Imbalanced Classification by SPMH (ICSPMH) as a solution to imbalanced class problems. ICSPMH uses SPMH multiple times to divide the space into different sub-spaces, creating various sub-spaces each time. It then trains different classifiers for each portion of the space, creating an ensemble classifier through a bagging technique. To assess the performance of our proposed framework, we selected 44 well-known datasets for comparison with some state-of-the-art approaches. The results demonstrate that ICSPMH outperforms other competent methods and can potentially reduce the oversampling rate to zero. Additionally, an experiment indicated that the choice of metaheuristic algorithm in SPMH does not significantly impact the final performance. The paper also includes a correlation analysis between oversampling rate and final performance, revealing that the framework effectively eliminates imbalanced data problems with minimal changes to the original dataset. In summary, because ICSPMH applies fewer changes in data distribution and sets up local classifiers that improve classification performance, it looks like a promising method for classifying imbalanced datasets.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Soft Computing

  • ISSN

    1568-4946

  • e-ISSN

    1872-9681

  • Svazek periodika

    167

  • Číslo periodika v rámci svazku

    Dec

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    22

  • Strana od-do

  • Kód UT WoS článku

    001338601900001

  • EID výsledku v databázi Scopus