UWB at IEST 2018: Emotion Prediction in Tweets with Bidirectional Long Short-Term Memory Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43955262" target="_blank" >RIV/49777513:23520/18:43955262 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.18653/v1/W18-6232" target="_blank" >http://dx.doi.org/10.18653/v1/W18-6232</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/W18-6232" target="_blank" >10.18653/v1/W18-6232</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
UWB at IEST 2018: Emotion Prediction in Tweets with Bidirectional Long Short-Term Memory Neural Network
Popis výsledku v původním jazyce
This paper describes our system created for the WASSA 2018 Implicit Emotion Shared Task. The goal of this task is to predict the emotion of a given tweet, from which a certain emotion word is removed. The removed word can be sad, happy, disgusted, angry, afraid or a synonym of one of them. Our proposed system is based on deep-learning methods. We use Bidirectional Long Short-Term Memory (BiLSTM) with word embeddings as an input. Pre-trained DeepMoji model and pre-trained emoji2vec emoji embeddings are also used as additional inputs. Our System achieves 0.657 macro F1 score and our rank is 13th out of 30.
Název v anglickém jazyce
UWB at IEST 2018: Emotion Prediction in Tweets with Bidirectional Long Short-Term Memory Neural Network
Popis výsledku anglicky
This paper describes our system created for the WASSA 2018 Implicit Emotion Shared Task. The goal of this task is to predict the emotion of a given tweet, from which a certain emotion word is removed. The removed word can be sad, happy, disgusted, angry, afraid or a synonym of one of them. Our proposed system is based on deep-learning methods. We use Bidirectional Long Short-Term Memory (BiLSTM) with word embeddings as an input. Pre-trained DeepMoji model and pre-trained emoji2vec emoji embeddings are also used as additional inputs. Our System achieves 0.657 macro F1 score and our rank is 13th out of 30.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů