On uniform regularity and strong regularity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43952543" target="_blank" >RIV/49777513:23520/19:43952543 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1080/02331934.2018.1547383" target="_blank" >https://doi.org/10.1080/02331934.2018.1547383</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/02331934.2018.1547383" target="_blank" >10.1080/02331934.2018.1547383</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On uniform regularity and strong regularity
Popis výsledku v původním jazyce
We investigate uniform versions of (metric) regularity and strong (metric) regularity on compact subsets of Banach spaces, in particular, along continuous paths. These two properties turn out to play a key role in analyzing path-following schemes for tracking a solution trajectory of a parametric generalized equation or, more generally, of a differential generalized equation (DGE). The latter model allows us to describe in a unified way several problems in control and optimization such as differential variational inequalities and control systems with state constraints. We study two inexact path-following methods for DGEs having the order of the grid error O(h) and O(h^2), respectively. We provide numerical experiments, comparing the schemes derived, for simple problems arising in physics. Finally, we study metric regularity of mappings associated with a particular case of the DGE arising in control theory. We establish the relationship between the pointwise version of this property and its counterpart in function spaces.
Název v anglickém jazyce
On uniform regularity and strong regularity
Popis výsledku anglicky
We investigate uniform versions of (metric) regularity and strong (metric) regularity on compact subsets of Banach spaces, in particular, along continuous paths. These two properties turn out to play a key role in analyzing path-following schemes for tracking a solution trajectory of a parametric generalized equation or, more generally, of a differential generalized equation (DGE). The latter model allows us to describe in a unified way several problems in control and optimization such as differential variational inequalities and control systems with state constraints. We study two inexact path-following methods for DGEs having the order of the grid error O(h) and O(h^2), respectively. We provide numerical experiments, comparing the schemes derived, for simple problems arising in physics. Finally, we study metric regularity of mappings associated with a particular case of the DGE arising in control theory. We establish the relationship between the pointwise version of this property and its counterpart in function spaces.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-00735S" target="_blank" >GA15-00735S: Analýza stability optim a ekvilibrií v ekonomii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
OPTIMIZATION
ISSN
0233-1934
e-ISSN
—
Svazek periodika
68
Číslo periodika v rámci svazku
2-3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
29
Strana od-do
549-577
Kód UT WoS článku
000462381900008
EID výsledku v databázi Scopus
2-s2.0-85057321614