Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Voronoi-Based Detection of Pockets in Proteins Defined by Large and Small Probes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955182" target="_blank" >RIV/49777513:23520/19:43955182 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1002/jcc.25828" target="_blank" >https://doi.org/10.1002/jcc.25828</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jcc.25828" target="_blank" >10.1002/jcc.25828</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Voronoi-Based Detection of Pockets in Proteins Defined by Large and Small Probes

  • Popis výsledku v původním jazyce

    The function of enzymatic proteins is given by their ability to bind specific small molecules into their active sites. These sites can often be found in pockets on a hypothetical boundary between the protein and its environment. Detection, analysis, and visualization of pockets find its use in protein engineering and drug discovery. Many definitions of pockets and algorithms for their computation have been proposed. Kawabata and Go defined them as the regions of empty space into which a small spherical probe can enter but a large probe cannot and developed programs that can compute their approximate shape. In this article, this definition was slightly modified in order to capture the existence of large internal holes, and a Voronoi‐based method for the computation of the exact shape of these modified regions is introduced. The method first puts a finite number of large probes on the protein exterior surface and then, considering both large probes and atomic balls as obstacles for the small probe, the method computes the exact shape of the regions for the small probe. This is all achieved with Voronoi diagrams, which help with the safe navigation of spherical probes among spherical obstacles. Detected regions are internally represented as graphs of vertices and edges describing possible movements of the center of the small probe on Voronoi edges. The surface bounding each region is obtained from this representation and used for visualization, volume estimation, and comparison with other approaches.

  • Název v anglickém jazyce

    Voronoi-Based Detection of Pockets in Proteins Defined by Large and Small Probes

  • Popis výsledku anglicky

    The function of enzymatic proteins is given by their ability to bind specific small molecules into their active sites. These sites can often be found in pockets on a hypothetical boundary between the protein and its environment. Detection, analysis, and visualization of pockets find its use in protein engineering and drug discovery. Many definitions of pockets and algorithms for their computation have been proposed. Kawabata and Go defined them as the regions of empty space into which a small spherical probe can enter but a large probe cannot and developed programs that can compute their approximate shape. In this article, this definition was slightly modified in order to capture the existence of large internal holes, and a Voronoi‐based method for the computation of the exact shape of these modified regions is introduced. The method first puts a finite number of large probes on the protein exterior surface and then, considering both large probes and atomic balls as obstacles for the small probe, the method computes the exact shape of the regions for the small probe. This is all achieved with Voronoi diagrams, which help with the safe navigation of spherical probes among spherical obstacles. Detected regions are internally represented as graphs of vertices and edges describing possible movements of the center of the small probe on Voronoi edges. The surface bounding each region is obtained from this representation and used for visualization, volume estimation, and comparison with other approaches.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Computational Chemistry

  • ISSN

    0192-8651

  • e-ISSN

  • Svazek periodika

    40

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    1758-1771

  • Kód UT WoS článku

    000470013600003

  • EID výsledku v databázi Scopus

    2-s2.0-85063670773