Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Unified Language-Independent DNN-Based G2P Converter

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955898" target="_blank" >RIV/49777513:23520/19:43955898 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2335.pdf" target="_blank" >https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2335.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2019-2335" target="_blank" >10.21437/Interspeech.2019-2335</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unified Language-Independent DNN-Based G2P Converter

  • Popis výsledku v původním jazyce

    We introduce a unified Grapheme-to-phoneme conversion framework based on the composition of deep neural networks. In contrary to the usual approaches building the G2P frameworks from the dictionary, we use whole phrases, which allows us to capture various language properties, e.g. cross-word assimilation, without the need for any special care or topology adjustments. The evaluation is carried out on three different languages -- English, Czech and Russian. Each requires dealing with specific properties, stressing the proposed framework in various ways. The very first results show promising performance of the proposed framework, dealing with all the phenomena specific to the tested languages. Thus, we consider the framework to be language-independent for a wide range of languages.

  • Název v anglickém jazyce

    Unified Language-Independent DNN-Based G2P Converter

  • Popis výsledku anglicky

    We introduce a unified Grapheme-to-phoneme conversion framework based on the composition of deep neural networks. In contrary to the usual approaches building the G2P frameworks from the dictionary, we use whole phrases, which allows us to capture various language properties, e.g. cross-word assimilation, without the need for any special care or topology adjustments. The evaluation is carried out on three different languages -- English, Czech and Russian. Each requires dealing with specific properties, stressing the proposed framework in various ways. The very first results show promising performance of the proposed framework, dealing with all the phenomena specific to the tested languages. Thus, we consider the framework to be language-independent for a wide range of languages.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-19324S" target="_blank" >GA19-19324S: Plně trénovatelná syntéza české řeči z textu s využitím hlubokých neuronových sítí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 20th Annual Conference of the International Speech Communication Association (Interspeech 2019)

  • ISBN

    978-1-5108-9683-3

  • ISSN

    2308-457X

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    2085-2089

  • Název nakladatele

    Curran Associates, Inc.

  • Místo vydání

    Red Hook, NY

  • Místo konání akce

    Graz, Austria

  • Datum konání akce

    15. 9. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku