Comparison of Road Traffic Simulation Speed on CPU and GPU
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43956278" target="_blank" >RIV/49777513:23520/19:43956278 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/DS-RT47707.2019.8958702" target="_blank" >http://dx.doi.org/10.1109/DS-RT47707.2019.8958702</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/DS-RT47707.2019.8958702" target="_blank" >10.1109/DS-RT47707.2019.8958702</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Road Traffic Simulation Speed on CPU and GPU
Popis výsledku v původním jazyce
In this paper, we describe a fair comparison of the performance of a microscopic road traffic simulation performed on a GPU and on a CPU. The aim of our work is to determine the speedup, which can be achieved if the GPU is used for the same simulation instead of the (multi-core) CPU. A microscopic road traffic simulator capable of running on both platforms was created for this purpose with the aim to make the GPU-based and the CPU-based simulations as similar as possible. The performances of both the GPU-based and the CPU-based simulations were tested using two different road traffic models (a car-following model and a cellular automaton model), four road traffic networks (regular square grids of crossroads) of different sizes, and three different hardware configurations. The maximal achieved speedup using the GPU instead of the multi-core CPU for the cellular automaton model was 12.4. For the car-following model, the maximal achieved speedup was 10.7.
Název v anglickém jazyce
Comparison of Road Traffic Simulation Speed on CPU and GPU
Popis výsledku anglicky
In this paper, we describe a fair comparison of the performance of a microscopic road traffic simulation performed on a GPU and on a CPU. The aim of our work is to determine the speedup, which can be achieved if the GPU is used for the same simulation instead of the (multi-core) CPU. A microscopic road traffic simulator capable of running on both platforms was created for this purpose with the aim to make the GPU-based and the CPU-based simulations as similar as possible. The performances of both the GPU-based and the CPU-based simulations were tested using two different road traffic models (a car-following model and a cellular automaton model), four road traffic networks (regular square grids of crossroads) of different sizes, and three different hardware configurations. The maximal achieved speedup using the GPU instead of the multi-core CPU for the cellular automaton model was 12.4. For the car-following model, the maximal achieved speedup was 10.7.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT)
ISBN
978-1-72812-923-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
9-16
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Cosenza, Itálie
Datum konání akce
7. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—