NN-Based Czech Sign Language Synthesis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43956396" target="_blank" >RIV/49777513:23520/19:43956396 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-26061-3_57" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-26061-3_57</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-26061-3_57" target="_blank" >10.1007/978-3-030-26061-3_57</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
NN-Based Czech Sign Language Synthesis
Popis výsledku v původním jazyce
This paper describes our Czech sign language synthesis that converts a Czech text into a series of skeletal poses. Our main goal is to avoid demanding handcrafted annotations of videos and to avoid a manual mapping between sign language glosses and skeletal poses. Thus, instead of solving these task separately, we join a model of an implicit neural-network-based translator and a model of the mapping between sign language glosses and we train both models together. For this purpose, we propose a simple differentiable operation that decomposes input symbols and it allows to produce a required series without any recurrent mechanism. We used The OpenPose toolbox to automatically extract skeletal poses and we designed a gradient-descend-based algorithm that converts a 2D skeleton model to a 3D skeleton model in order to fix misplaced and missing joints. Weather forecast parts of The daily news in Czech sign language were used to obtain our training and testing data. Our experiments demonstrate the benefit of the implicit translator and an ability of the designed sign language synthesis system to produce naturally formed skeletal poses.
Název v anglickém jazyce
NN-Based Czech Sign Language Synthesis
Popis výsledku anglicky
This paper describes our Czech sign language synthesis that converts a Czech text into a series of skeletal poses. Our main goal is to avoid demanding handcrafted annotations of videos and to avoid a manual mapping between sign language glosses and skeletal poses. Thus, instead of solving these task separately, we join a model of an implicit neural-network-based translator and a model of the mapping between sign language glosses and we train both models together. For this purpose, we propose a simple differentiable operation that decomposes input symbols and it allows to produce a required series without any recurrent mechanism. We used The OpenPose toolbox to automatically extract skeletal poses and we designed a gradient-descend-based algorithm that converts a 2D skeleton model to a 3D skeleton model in order to fix misplaced and missing joints. Weather forecast parts of The daily news in Czech sign language were used to obtain our training and testing data. Our experiments demonstrate the benefit of the implicit translator and an ability of the designed sign language synthesis system to produce naturally formed skeletal poses.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Umělá inteligence a uvažování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Speech and Computer, 21st International Conference, SPECOM 2019, Istanbul, turkey, August 20-25,2019, Proceedings
ISBN
978-3-030-26060-6
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
10
Strana od-do
559-568
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Instanbul, Turkey
Datum konání akce
20. 8. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—