The ε-Approximation of the Time-Dependent Shortest Path Problem Solution for All Departure Times
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43957033" target="_blank" >RIV/49777513:23520/19:43957033 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2220-9964/8/12/538" target="_blank" >https://www.mdpi.com/2220-9964/8/12/538</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ijgi8120538" target="_blank" >10.3390/ijgi8120538</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The ε-Approximation of the Time-Dependent Shortest Path Problem Solution for All Departure Times
Popis výsledku v původním jazyce
In this paper, the shortest paths search for all departure times (profile search) are discussed. This problem is called a time-dependent shortest path problem (TDSP) and is suitable for time-dependent travel-time analysis. Particularly, this paper deals with the ε -approximation of profile search computation. The proposed algorithms are based on a label correcting modification of Dijkstra’s algorithm (LCA). The main idea of the algorithm is to simplify the arrival function after every relaxation step so that the maximum relative error is maintained. When the maximum relative error is 0.001, the proposed solution saves more than 97% of breakpoints and 80% of time compared to the exact version of LCA. Furthermore, the runtime can be improved by other 15% to 40% using heuristic splitting of the original departure time interval to several subintervals. The algorithms we developed can be used as a precomputation step in other routing algorithms or for some travel time analysis.
Název v anglickém jazyce
The ε-Approximation of the Time-Dependent Shortest Path Problem Solution for All Departure Times
Popis výsledku anglicky
In this paper, the shortest paths search for all departure times (profile search) are discussed. This problem is called a time-dependent shortest path problem (TDSP) and is suitable for time-dependent travel-time analysis. Particularly, this paper deals with the ε -approximation of profile search computation. The proposed algorithms are based on a label correcting modification of Dijkstra’s algorithm (LCA). The main idea of the algorithm is to simplify the arrival function after every relaxation step so that the maximum relative error is maintained. When the maximum relative error is 0.001, the proposed solution saves more than 97% of breakpoints and 80% of time compared to the exact version of LCA. Furthermore, the runtime can be improved by other 15% to 40% using heuristic splitting of the original departure time interval to several subintervals. The algorithms we developed can be used as a precomputation step in other routing algorithms or for some travel time analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ISPRS International Journal of Geo-Information
ISSN
2220-9964
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000518041800017
EID výsledku v databázi Scopus
2-s2.0-85076685202