Semantic text segmentation from synthetic images of full-text documents
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43958267" target="_blank" >RIV/49777513:23520/19:43958267 - isvavai.cz</a>
Výsledek na webu
<a href="http://proceedings.spiiras.nw.ru/index.php/sp/article/view/4527/2627" target="_blank" >http://proceedings.spiiras.nw.ru/index.php/sp/article/view/4527/2627</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15622/sp.2019.18.6.1381-1406" target="_blank" >10.15622/sp.2019.18.6.1381-1406</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semantic text segmentation from synthetic images of full-text documents
Popis výsledku v původním jazyce
An algorithm (divided into multiple modules) for generating images of fulltext documents is presented. These images can be used to train, test, and evaluate models for Optical Character Recognition (OCR). The algorithm is modular, individual parts can be changed and tweaked to generate desired images. A method for obtaining background images of paper from already digitized documents is described. For this, a novel approach based on Variational AutoEncoder (VAE) to train a generative model was used. These backgrounds enable the generation of similar background images as the training ones on the fly. The module for printing the text uses large text corpora, a font, and suitable positional and brightness character noise to obtain believable results (for natural-looking aged documents). A few types of layouts of the page are supported. The system generates a detailed, structured annotation of the synthesized image. Tesseract OCR to compare the real-world images to generated images is used. The recognition rate is very similar, indicating the proper appearance of the synthetic images. Moreover, the errors which were made by the OCR system in both cases are very similar. From the generated images, fully-convolutional encoder-decoder neural network architecture for semantic segmentation of individual characters was trained. With this architecture, the recognition accuracy of 99.28% on a test set of synthetic documents is reached.
Název v anglickém jazyce
Semantic text segmentation from synthetic images of full-text documents
Popis výsledku anglicky
An algorithm (divided into multiple modules) for generating images of fulltext documents is presented. These images can be used to train, test, and evaluate models for Optical Character Recognition (OCR). The algorithm is modular, individual parts can be changed and tweaked to generate desired images. A method for obtaining background images of paper from already digitized documents is described. For this, a novel approach based on Variational AutoEncoder (VAE) to train a generative model was used. These backgrounds enable the generation of similar background images as the training ones on the fly. The module for printing the text uses large text corpora, a font, and suitable positional and brightness character noise to obtain believable results (for natural-looking aged documents). A few types of layouts of the page are supported. The system generates a detailed, structured annotation of the synthesized image. Tesseract OCR to compare the real-world images to generated images is used. The recognition rate is very similar, indicating the proper appearance of the synthetic images. Moreover, the errors which were made by the OCR system in both cases are very similar. From the generated images, fully-convolutional encoder-decoder neural network architecture for semantic segmentation of individual characters was trained. With this architecture, the recognition accuracy of 99.28% on a test set of synthetic documents is reached.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SPIIRAS Proceedings
ISSN
2078-9181
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
RU - Ruská federace
Počet stran výsledku
26
Strana od-do
1380-1405
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85078454715