An influence of unilateral sources and sinks in reaction-diffusion systems exhibiting Turing's instability on bifurcation and pattern formation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43958046" target="_blank" >RIV/49777513:23520/20:43958046 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0362546X20300742" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0362546X20300742</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2020.111815" target="_blank" >10.1016/j.na.2020.111815</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An influence of unilateral sources and sinks in reaction-diffusion systems exhibiting Turing's instability on bifurcation and pattern formation
Popis výsledku v původním jazyce
We consider a general reaction-diffusion system exhibiting Turing's diffusion-driven instability. In the first part of the paper, we supplement the activator equation by unilateral integral sources and sinks of the type $left(int_{K} frac{u(x)}{left| K right|} ; dK right)^{-}$ and $left(int_{K} frac{u(x)}{left| K right|} ; dK right)^{+}$. These terms measure an average of the concentration over the set $K$ and are active only when this average decreases bellow or increases above the value of the reference spatially homogeneous steady state, which is shifted to the origin. We show that the set of diffusion parameters in which spatially heterogeneous stationary solutions can bifurcate from the reference state is smaller than in the classical case without any unilateral integral terms. This problem is studied for the case of mixed, pure Neumann and periodic boundary conditions. In the second part of the paper, we investigate the effect of both unilateral terms of the type $u^{-},u^{+}$ and unilateral integral terms on the pattern formation using numerical experiments on the system with well-known Schnakenberg kinetics.
Název v anglickém jazyce
An influence of unilateral sources and sinks in reaction-diffusion systems exhibiting Turing's instability on bifurcation and pattern formation
Popis výsledku anglicky
We consider a general reaction-diffusion system exhibiting Turing's diffusion-driven instability. In the first part of the paper, we supplement the activator equation by unilateral integral sources and sinks of the type $left(int_{K} frac{u(x)}{left| K right|} ; dK right)^{-}$ and $left(int_{K} frac{u(x)}{left| K right|} ; dK right)^{+}$. These terms measure an average of the concentration over the set $K$ and are active only when this average decreases bellow or increases above the value of the reference spatially homogeneous steady state, which is shifted to the origin. We show that the set of diffusion parameters in which spatially heterogeneous stationary solutions can bifurcate from the reference state is smaller than in the classical case without any unilateral integral terms. This problem is studied for the case of mixed, pure Neumann and periodic boundary conditions. In the second part of the paper, we investigate the effect of both unilateral terms of the type $u^{-},u^{+}$ and unilateral integral terms on the pattern formation using numerical experiments on the system with well-known Schnakenberg kinetics.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nonlinear Analysis
ISSN
0362-546X
e-ISSN
—
Svazek periodika
196
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
26
Strana od-do
—
Kód UT WoS článku
000526928200002
EID výsledku v databázi Scopus
2-s2.0-85079851235