Improving Face Recognition Methods Based on POEM Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43958230" target="_blank" >RIV/49777513:23520/20:43958230 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scitepress.org/Link.aspx?doi=10.5220/0008950305380545" target="_blank" >https://www.scitepress.org/Link.aspx?doi=10.5220/0008950305380545</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0008950305380545" target="_blank" >10.5220/0008950305380545</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving Face Recognition Methods Based on POEM Features
Popis výsledku v původním jazyce
The usual way how POEM descriptors are utilized consists in constructing features in rectangular non-overlapping regions covering the whole image. The features created in the regions are then concatenated into one long vector representing the face. We propose an enhancement of this method using automatic key-point identification strategies. In our approach, the image features are created in the detected key-points. We also employ a more complex matching procedure that compares the features individually. This method is efficient particularly when the number of training samples is small and therefore neural network based methods fail, because they do not have enough training data. The proposed approach is evaluated on three standard face corpora. The obtained results show that the combination of POEM features with the automatic point identification and a more sophisticated matching algorithm brings significant improvement over the baseline method.
Název v anglickém jazyce
Improving Face Recognition Methods Based on POEM Features
Popis výsledku anglicky
The usual way how POEM descriptors are utilized consists in constructing features in rectangular non-overlapping regions covering the whole image. The features created in the regions are then concatenated into one long vector representing the face. We propose an enhancement of this method using automatic key-point identification strategies. In our approach, the image features are created in the detected key-points. We also employ a more complex matching procedure that compares the features individually. This method is efficient particularly when the number of training samples is small and therefore neural network based methods fail, because they do not have enough training data. The proposed approach is evaluated on three standard face corpora. The obtained results show that the combination of POEM features with the automatic point identification and a more sophisticated matching algorithm brings significant improvement over the baseline method.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 12th International Conference on Agents and Artificial Intelligence
ISBN
978-989-758-395-7
ISSN
2184-433X
e-ISSN
—
Počet stran výsledku
8
Strana od-do
538-545
Název nakladatele
ScitePress
Místo vydání
Setúbal
Místo konání akce
Valletta, Malta
Datum konání akce
22. 2. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—