Label errors in point cloud in training data for classification using machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959367" target="_blank" >RIV/49777513:23520/20:43959367 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.31490/9788024843988-21" target="_blank" >http://dx.doi.org/10.31490/9788024843988-21</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.31490/9788024843988-21" target="_blank" >10.31490/9788024843988-21</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Label errors in point cloud in training data for classification using machine learning
Popis výsledku v původním jazyce
One of the applications of ULS (UAV-borne laser scanning) lies in power line inspection. However, with LiDAR data (i.e. point clouds) comes the need for reliable automatic classification, also called semantic segmentation, of data which allows further analysis of gathered data. Vast number of possible methods for automatic classification of point clouds have been proposed and implemented, many of which depend on machine learning. Motivation for this research is the need for pre-classified data for training of machine learning models, specifically the impact of label accuracy/error in the pre-classified data used for machine learning classification. To find out what is the impact of error levels of labels on machine learning classification of power line point clouds we have used the method of Classification and regression trees (CART) using Opals software. During this research several tests were conducted with various levels and types of error in class labelling of training data and the results were compared with correctly labelled data to calculate confusion matrices and thus evaluate the impact of different error levels.
Název v anglickém jazyce
Label errors in point cloud in training data for classification using machine learning
Popis výsledku anglicky
One of the applications of ULS (UAV-borne laser scanning) lies in power line inspection. However, with LiDAR data (i.e. point clouds) comes the need for reliable automatic classification, also called semantic segmentation, of data which allows further analysis of gathered data. Vast number of possible methods for automatic classification of point clouds have been proposed and implemented, many of which depend on machine learning. Motivation for this research is the need for pre-classified data for training of machine learning models, specifically the impact of label accuracy/error in the pre-classified data used for machine learning classification. To find out what is the impact of error levels of labels on machine learning classification of power line point clouds we have used the method of Classification and regression trees (CART) using Opals software. During this research several tests were conducted with various levels and types of error in class labelling of training data and the results were compared with correctly labelled data to calculate confusion matrices and thus evaluate the impact of different error levels.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Symposium GIS Ostrava 2020 Prostorová data pro Smart City a Smart Region
ISBN
978-80-248-4398-8
ISSN
1213-239X
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
VYSOKÁ ŠKOLA BÁŇSKÁ-TECHNICKÁ UNIVERZITA OSTRAVA
Místo vydání
Ostrava
Místo konání akce
Ostrava
Datum konání akce
18. 3. 2020
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—