Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic Tool for Coral Reef Detection, Localization and Annotation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43960896" target="_blank" >RIV/49777513:23520/20:43960896 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.kky.zcu.cz/cs/sw/corals" target="_blank" >http://www.kky.zcu.cz/cs/sw/corals</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic Tool for Coral Reef Detection, Localization and Annotation

  • Popis výsledku v původním jazyce

    The created tool is designed to automatically detect and annotate various benthic substrate (Corals) types over image collections taken from multiple coral reefs as part of a coral reef monitoring project with the Marine Technology Research Unit at the University of Essex. Live corals are an important biological class that has a massive contribution to the ocean ecosystem biodiversity. Corals are a key habitat for thousands of marine species and provide an essential source of nutrition and yield for people in developing countries. Therefore, automatic monitoring of coral reefs condition plays a crucial part in understanding future threats and prioritizing conservation efforts. The system&apos;s performance was validated in the international ImageCLEFcoral competition, where achieve an impressive mAP@0.5 of 0.582 in localization and 0.678 in instance segmentation. The system is wrapped up around the Mask R-CNN, the state-of-the-art instance segmentation framework and the TensorFlow Object Detection API - a deep learning framework that allows fine-tuning the publicly available checkpoints. To increase the model performance, we extend the recent state-of-the-art Convolutional Neural Network (CNN) object detection framework (Mask R-CNN) with an additional known as well as some unique techniques, e.g., detection ensemble, test time data augmentations, accumulated gradient normalization, and pseudo-labelling. The &quot;tool&quot; works as an end-to-end system that takes an image as input and returns 2D locations and substrate type for each prediction. Both the pre-trained models and the Application Interface (API) were made OpenSource to support further research in this area. The software was created by researchers from the Faculty of Applied Sciences - University of West Bohemia (UWB) and the Institute of Information Theory and Automation - Czech Academy of Sciences. Lukas Picek from the UWB was supported by the UWB grant SGS-2019-027.

  • Název v anglickém jazyce

    Automatic Tool for Coral Reef Detection, Localization and Annotation

  • Popis výsledku anglicky

    The created tool is designed to automatically detect and annotate various benthic substrate (Corals) types over image collections taken from multiple coral reefs as part of a coral reef monitoring project with the Marine Technology Research Unit at the University of Essex. Live corals are an important biological class that has a massive contribution to the ocean ecosystem biodiversity. Corals are a key habitat for thousands of marine species and provide an essential source of nutrition and yield for people in developing countries. Therefore, automatic monitoring of coral reefs condition plays a crucial part in understanding future threats and prioritizing conservation efforts. The system&apos;s performance was validated in the international ImageCLEFcoral competition, where achieve an impressive mAP@0.5 of 0.582 in localization and 0.678 in instance segmentation. The system is wrapped up around the Mask R-CNN, the state-of-the-art instance segmentation framework and the TensorFlow Object Detection API - a deep learning framework that allows fine-tuning the publicly available checkpoints. To increase the model performance, we extend the recent state-of-the-art Convolutional Neural Network (CNN) object detection framework (Mask R-CNN) with an additional known as well as some unique techniques, e.g., detection ensemble, test time data augmentations, accumulated gradient normalization, and pseudo-labelling. The &quot;tool&quot; works as an end-to-end system that takes an image as input and returns 2D locations and substrate type for each prediction. Both the pre-trained models and the Application Interface (API) were made OpenSource to support further research in this area. The software was created by researchers from the Faculty of Applied Sciences - University of West Bohemia (UWB) and the Institute of Information Theory and Automation - Czech Academy of Sciences. Lukas Picek from the UWB was supported by the UWB grant SGS-2019-027.

Klasifikace

  • Druh

    R - Software

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Interní identifikační kód produktu

    ZCU/KKY/2020/015

  • Technické parametry

    Tento softwarový nástroj používá pokročilé metody strojového učení. Pro bližší informace k technickým detailům a získání licence prosím kontaktujte: Lukáš Picek, KKY FAV Západočeská univerzita v Plzni, Technická 8, 301 00 Plzeň (IČ: 49777513), email: picekl@kky.zcu.cz, tel. 37763 2125.

  • Ekonomické parametry

    Tento SW nástroj je volně dostupný pro využití nekomerčního charakteru. Vzhledem k významnosti výstupu v oblasti vzdělávání a souvisejícímu společenskému dopadu nelze zhodnotit ekonomické parametry SW výstupu - operativní výzkum ve veřejném zájmu.

  • IČO vlastníka výsledku

    49777513

  • Název vlastníka

    Západočeská univerzita v Plzni