A Grammatical Evolution Approach for Estimating Blood Glucose Levels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43961697" target="_blank" >RIV/49777513:23520/20:43961697 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11140/20:10425967 RIV/00669806:_____/20:10425967
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/9367402" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9367402</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2020.10.048" target="_blank" >10.1016/j.procs.2020.10.048</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Grammatical Evolution Approach for Estimating Blood Glucose Levels
Popis výsledku v původním jazyce
The management of diabetes is a very complex task, hence devising automatic procedures able to predict the glycemic level can represent a significant step towards the building of an artificial pancreas capable of providing the needed amounts of insulin boluses. This paper presents a Grammatical Evolution-based algorithm aiming at extrapolating a regression model able to estimate the blood glucose level in future instants of time through interstitial glucose measurements. The hypothesis is that the amounts of carbohydrates assumed, of basal insulin levels and of those administered with boluses are known. Experiments, performed on a real-world database made up of five patients suffering from Type 1 diabetes, are shown in terms of Clark Error Grid analysis. To evaluate the effectiveness of the predictions derived from the proposed approach, the results obtained are compared against those obtained by other state–of–the–art evolutionary–based methods very recently proposed.
Název v anglickém jazyce
A Grammatical Evolution Approach for Estimating Blood Glucose Levels
Popis výsledku anglicky
The management of diabetes is a very complex task, hence devising automatic procedures able to predict the glycemic level can represent a significant step towards the building of an artificial pancreas capable of providing the needed amounts of insulin boluses. This paper presents a Grammatical Evolution-based algorithm aiming at extrapolating a regression model able to estimate the blood glucose level in future instants of time through interstitial glucose measurements. The hypothesis is that the amounts of carbohydrates assumed, of basal insulin levels and of those administered with boluses are known. Experiments, performed on a real-world database made up of five patients suffering from Type 1 diabetes, are shown in terms of Clark Error Grid analysis. To evaluate the effectiveness of the predictions derived from the proposed approach, the results obtained are compared against those obtained by other state–of–the–art evolutionary–based methods very recently proposed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 IEEE Globecom
ISBN
978-1-72817-307-8
ISSN
2166-0069
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE Xplore Conference Publishing
Místo vydání
USA
Místo konání akce
Taipei, Taiwan, virtuálně
Datum konání akce
7. 12. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000662202100012