Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Finding points of importance for radial basis function approximation of large scattered data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43961926" target="_blank" >RIV/49777513:23520/20:43961926 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.springer.com/series/558" target="_blank" >https://www.springer.com/series/558</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-50433-5_19" target="_blank" >10.1007/978-3-030-50433-5_19</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Finding points of importance for radial basis function approximation of large scattered data

  • Popis výsledku v původním jazyce

    Interpolation and approximation methods are used in many fields such as in engineering as well as other disciplines for various scientific discoveries. If the data domain is formed by scattered data, approximation methods may become very complicated as well as time-consuming. Usually, the given data is tessellated by some method, not necessarily the Delaunay triangulation, to produce triangular or tetrahedral meshes. After that approximation methods can be used to produce the surface. However, it is difficult to ensure the continuity and smoothness of the final interpolant along with all adjacent triangles. In this contribution, a meshless approach is proposed by using radial basis functions (RBFs). It is applicable to explicit functions of two variables and it is suitable for all types of scattered data in general. The key point for the RBF approximation is finding the important points that give a good approximation with high precision to the scattered data. Since the compactly supported RBFs (CSRBF) has limited influence in numerical computation, large data sets can be processed efficiently as well as very fast via some efficient algorithm. The main advantage of the RBF is, that it leads to a solution of a system of linear equations (SLE) Ax = b. Thus any efficient method solves the systems of linear equations that can be used. In this study is we propose a new method of determining the importance points on the scattered data that produces a very good reconstructed surface with higher accuracy while maintaining the smoothness of the surface.

  • Název v anglickém jazyce

    Finding points of importance for radial basis function approximation of large scattered data

  • Popis výsledku anglicky

    Interpolation and approximation methods are used in many fields such as in engineering as well as other disciplines for various scientific discoveries. If the data domain is formed by scattered data, approximation methods may become very complicated as well as time-consuming. Usually, the given data is tessellated by some method, not necessarily the Delaunay triangulation, to produce triangular or tetrahedral meshes. After that approximation methods can be used to produce the surface. However, it is difficult to ensure the continuity and smoothness of the final interpolant along with all adjacent triangles. In this contribution, a meshless approach is proposed by using radial basis functions (RBFs). It is applicable to explicit functions of two variables and it is suitable for all types of scattered data in general. The key point for the RBF approximation is finding the important points that give a good approximation with high precision to the scattered data. Since the compactly supported RBFs (CSRBF) has limited influence in numerical computation, large data sets can be processed efficiently as well as very fast via some efficient algorithm. The main advantage of the RBF is, that it leads to a solution of a system of linear equations (SLE) Ax = b. Thus any efficient method solves the systems of linear equations that can be used. In this study is we propose a new method of determining the importance points on the scattered data that produces a very good reconstructed surface with higher accuracy while maintaining the smoothness of the surface.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-05534S" target="_blank" >GA17-05534S: Meshless metody pro vizualizaci velkých časově-prostorových vektorových dat</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICCS 2020

  • ISBN

    978-3-030-50432-8

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    11

  • Strana od-do

    239-250

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Amsterdam, The Netherlands

  • Datum konání akce

    3. 6. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku