On combining the directional solutions of the gravitational curvature boundary-value problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43954935" target="_blank" >RIV/49777513:23520/21:43954935 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/1345_2019_68" target="_blank" >https://doi.org/10.1007/1345_2019_68</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/1345_2019_68" target="_blank" >10.1007/1345_2019_68</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On combining the directional solutions of the gravitational curvature boundary-value problem
Popis výsledku v původním jazyce
In global studies, the Earth's gravitational field is conveniently described in terms of spherical harmonics. The solution to a gravitational curvature boundary-value problem canould formally be formulated for the vertical-vertical-vertical, vertical-vertical-horizontal, vertical-horizontal-horizontal and horizontal-horizontal-horizontal components. Each equation provides an independent set of spherical harmonic coefficients because each component of the third-order gravitational tensor is sensitive to gravitational changes in the different direction. In this contribution, estimations of spherical harmonic coefficients are carried out by combining four solutions components of the gravitational curvature boundary-value problem based on using three methods, namely an arithmetic mean, a weighted mean and a conditional adjustment model. Since the third-order gradients directional derivatives of the gravitational potential are not yet observed by satellite sensors, we synthesise them at thea satellite altitude of 250 km from a global gravitational model up to the degree 360 of spherical harmonics, while adding a Gaussian noise with thea standard deviation of m-1 s-2. Results of the numerical analysis reveal that an arithmetic mean provides the best solution in terms by means of of the RMS fit between predicted and referenceobserved values. We explain this resultfinding by the fact that the conditions only create additional stochastic bindings between estimated parameters.
Název v anglickém jazyce
On combining the directional solutions of the gravitational curvature boundary-value problem
Popis výsledku anglicky
In global studies, the Earth's gravitational field is conveniently described in terms of spherical harmonics. The solution to a gravitational curvature boundary-value problem canould formally be formulated for the vertical-vertical-vertical, vertical-vertical-horizontal, vertical-horizontal-horizontal and horizontal-horizontal-horizontal components. Each equation provides an independent set of spherical harmonic coefficients because each component of the third-order gravitational tensor is sensitive to gravitational changes in the different direction. In this contribution, estimations of spherical harmonic coefficients are carried out by combining four solutions components of the gravitational curvature boundary-value problem based on using three methods, namely an arithmetic mean, a weighted mean and a conditional adjustment model. Since the third-order gradients directional derivatives of the gravitational potential are not yet observed by satellite sensors, we synthesise them at thea satellite altitude of 250 km from a global gravitational model up to the degree 360 of spherical harmonics, while adding a Gaussian noise with thea standard deviation of m-1 s-2. Results of the numerical analysis reveal that an arithmetic mean provides the best solution in terms by means of of the RMS fit between predicted and referenceobserved values. We explain this resultfinding by the fact that the conditions only create additional stochastic bindings between estimated parameters.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IAG Symposia
ISBN
978-3-030-54266-5
ISSN
0939-9585
e-ISSN
2197-9359
Počet stran výsledku
7
Strana od-do
41-47
Název nakladatele
Springer Verlag
Místo vydání
Cham
Místo konání akce
Rome
Datum konání akce
18. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—