Homogenization approach and Floquet-Bloch theory for wave analysis in fluid-saturated porous media with mesoscopic heterogeneities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43959412" target="_blank" >RIV/49777513:23520/21:43959412 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11025/42920" target="_blank" >http://hdl.handle.net/11025/42920</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apm.2020.08.044" target="_blank" >10.1016/j.apm.2020.08.044</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Homogenization approach and Floquet-Bloch theory for wave analysis in fluid-saturated porous media with mesoscopic heterogeneities
Popis výsledku v původním jazyce
We consider fluid-saturated poroelastic media whose the mechanical response is governed by the Biot model relevant to a mesoscopic scale. Assuming the material properties being described by periodic functions, to analyze wave propagation in such heterogeneous and anisotropic media, we derive a formulation based on the Floquet-Bloch (FB) wave decomposition which enables to analyze waves within the whole first Brillouin zone associated with the periodic structure. The wave dispersion results obtained by the FB approach are compared with those computed using a model derived by the homogenization based on the asymptotic analysis with respect to the scale parameter. As another new ingredient, the homogenized model is extended to describe media saturated simultaneously by multiple different fluids, so that the model involves new permeability tensors and differs in structure from the model derived earlier. The dispersion analysis by the FB approach leads to a cumbersome quadratic eigenvalue problem to be solved for complex wave numbers. We suggest an efficient filtration strategy to identify the principle propagating modes (the fast and slow compressional waves and the shear waves). For comparison with results of the FB transformation applied at the mesoscopic heterogeneity scale, the homogenized model responses are reconstructed using the corrector results of the homogenization with fixing a finite scale. Numerical examples illustrate very good correspondence of the dispersion results, as computed by both the approaches.
Název v anglickém jazyce
Homogenization approach and Floquet-Bloch theory for wave analysis in fluid-saturated porous media with mesoscopic heterogeneities
Popis výsledku anglicky
We consider fluid-saturated poroelastic media whose the mechanical response is governed by the Biot model relevant to a mesoscopic scale. Assuming the material properties being described by periodic functions, to analyze wave propagation in such heterogeneous and anisotropic media, we derive a formulation based on the Floquet-Bloch (FB) wave decomposition which enables to analyze waves within the whole first Brillouin zone associated with the periodic structure. The wave dispersion results obtained by the FB approach are compared with those computed using a model derived by the homogenization based on the asymptotic analysis with respect to the scale parameter. As another new ingredient, the homogenized model is extended to describe media saturated simultaneously by multiple different fluids, so that the model involves new permeability tensors and differs in structure from the model derived earlier. The dispersion analysis by the FB approach leads to a cumbersome quadratic eigenvalue problem to be solved for complex wave numbers. We suggest an efficient filtration strategy to identify the principle propagating modes (the fast and slow compressional waves and the shear waves). For comparison with results of the FB transformation applied at the mesoscopic heterogeneity scale, the homogenized model responses are reconstructed using the corrector results of the homogenization with fixing a finite scale. Numerical examples illustrate very good correspondence of the dispersion results, as computed by both the approaches.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED MATHEMATICAL MODELLING
ISSN
0307-904X
e-ISSN
—
Svazek periodika
91
Číslo periodika v rámci svazku
MAR 2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
000606310600001
EID výsledku v databázi Scopus
2-s2.0-85092219509