On approaches, methods and problems related to wave dispersion in porous media
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43953456" target="_blank" >RIV/49777513:23520/18:43953456 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/49777513:23640/18:43953456
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On approaches, methods and problems related to wave dispersion in porous media
Popis výsledku v původním jazyce
The paper is devoted to modelling of wave propagation in fluid saturated porous media. The aim is to compare two approaches suitable for wave analysis in periodic structures. The homogenization-based method provides macroscopic models and relies on scale separation, such that the wave length should be much longer than the heterogeneity size. The method based on the Bloch-Floquet theory is applicable for analyzing plane wave propagation in infi- nite continua only, but enables to capture also effects of Bragg’s scattering. Application of these two methods for computing the dispersion curves of the two-phase media with deformable and rigid skeletons is discussed in the context of two kinds of porous media: 1) deformable fluid- saturated porous media described by the Biot model at the mesoscopic scale, 2) waves in fluids saturating rigid porous structures. Computational studies based on the Bloch wave decompo- sition were performed for numerical models obtained using the finite element discretization of the corresponding problems imposed in the representative volume element. The results pre- sented in terms of dispersion curves are compared with analogous results obtained using the homogenized models providing directly the shear and pressure wave responses.
Název v anglickém jazyce
On approaches, methods and problems related to wave dispersion in porous media
Popis výsledku anglicky
The paper is devoted to modelling of wave propagation in fluid saturated porous media. The aim is to compare two approaches suitable for wave analysis in periodic structures. The homogenization-based method provides macroscopic models and relies on scale separation, such that the wave length should be much longer than the heterogeneity size. The method based on the Bloch-Floquet theory is applicable for analyzing plane wave propagation in infi- nite continua only, but enables to capture also effects of Bragg’s scattering. Application of these two methods for computing the dispersion curves of the two-phase media with deformable and rigid skeletons is discussed in the context of two kinds of porous media: 1) deformable fluid- saturated porous media described by the Biot model at the mesoscopic scale, 2) waves in fluids saturating rigid porous structures. Computational studies based on the Bloch wave decompo- sition were performed for numerical models obtained using the finite element discretization of the corresponding problems imposed in the representative volume element. The results pre- sented in terms of dispersion curves are compared with analogous results obtained using the homogenized models providing directly the shear and pressure wave responses.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů