Modelling wave dispersion in fluid saturating periodic scaffolds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43960233" target="_blank" >RIV/49777513:23520/21:43960233 - isvavai.cz</a>
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S0096300321003349?token=2C63544A7C0815B5113B4E2502DD0AA2AD593CED8C5CCC0EC13FF20CF6656192A30903E22449550ADEB2998455EB34A9&originRegion=eu-west-1&originCreation=20211001055224" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0096300321003349?token=2C63544A7C0815B5113B4E2502DD0AA2AD593CED8C5CCC0EC13FF20CF6656192A30903E22449550ADEB2998455EB34A9&originRegion=eu-west-1&originCreation=20211001055224</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2021.126256" target="_blank" >10.1016/j.amc.2021.126256</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling wave dispersion in fluid saturating periodic scaffolds
Popis výsledku v původním jazyce
Acoustic waves in a slightly compressible fluid saturating porous periodic structure are studied using two complementary approaches: 1) the periodic homogenization (PH) method provides effective model equations for a general dynamic problem imposed in a bounded medium, 2) harmonic acoustic waves are studied in an infinite medium using the Floquet-Bloch (FB) wave decomposition. In contrast with usual simplifications, the advection phenomenon of the Navier-Stokes equations is accounted for. For this, an acoustic approximation is applied to linearize the advection term. The homogenization results are based the periodic unfolding method combined with the asymptotic expansion technique providing a straight upscaling procedure which leads to the macroscopic model defined in terms of the effective model parameters. These are computed using the characteristic responses of the porous microstructure. Using the FB theory, we derive dispersion equations for the scaffolds saturated by the inviscid, or the viscous, barotropic fluids, whereby the advection due to a permanent flow in the porous structures is respected. A computational study is performed for the numerical models obtained using the finite element discretization. For the FB methods-based dispersion analysis, quadratic eigenvalue problems must be solved. The numerical examples show influences of the microstructure size and of the advection generating an anisotropy of the acoustic waves dispersion.
Název v anglickém jazyce
Modelling wave dispersion in fluid saturating periodic scaffolds
Popis výsledku anglicky
Acoustic waves in a slightly compressible fluid saturating porous periodic structure are studied using two complementary approaches: 1) the periodic homogenization (PH) method provides effective model equations for a general dynamic problem imposed in a bounded medium, 2) harmonic acoustic waves are studied in an infinite medium using the Floquet-Bloch (FB) wave decomposition. In contrast with usual simplifications, the advection phenomenon of the Navier-Stokes equations is accounted for. For this, an acoustic approximation is applied to linearize the advection term. The homogenization results are based the periodic unfolding method combined with the asymptotic expansion technique providing a straight upscaling procedure which leads to the macroscopic model defined in terms of the effective model parameters. These are computed using the characteristic responses of the porous microstructure. Using the FB theory, we derive dispersion equations for the scaffolds saturated by the inviscid, or the viscous, barotropic fluids, whereby the advection due to a permanent flow in the porous structures is respected. A computational study is performed for the numerical models obtained using the finite element discretization. For the FB methods-based dispersion analysis, quadratic eigenvalue problems must be solved. The numerical examples show influences of the microstructure size and of the advection generating an anisotropy of the acoustic waves dispersion.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
—
Svazek periodika
410
Číslo periodika v rámci svazku
DEC 1 2021
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
29
Strana od-do
1-29
Kód UT WoS článku
000718889900002
EID výsledku v databázi Scopus
2-s2.0-85106318053