Modelling of acoustic waves in homogenized fluid-saturated deforming poroelastic periodic structures under permanent flow
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962043" target="_blank" >RIV/49777513:23520/21:43962043 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0377042721001552" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042721001552</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2021.113536" target="_blank" >10.1016/j.cam.2021.113536</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling of acoustic waves in homogenized fluid-saturated deforming poroelastic periodic structures under permanent flow
Popis výsledku v původním jazyce
Acoustic waves in a poroelastic medium with periodic structure are studied with respect to permanent seepage flow which modifies the wave propagation. The effective medium model is obtained using the homogenization of the linearized fluid-structure interaction problem while respecting the advection phenomenon in the Navier-Stokes equations. For linearization of the micromodel, an acoustic approximation is introduced which yields a problem for the acoustic fluctuations of the solid displacements, the fluid velocity and pressure. An extended Darcy law of the macromodel involves the permeability and advection tensors which both depend on an assumed stationary perfusion of the porous structure. The monochromatic plane wave propagation is described in terms of two quasi-compressional and two quasi-shear modes. Two alternative problem formulations in the frequency domain are discussed. The one defined in terms of displacement and velocity fields leads to generalized eigenvalue problems involving non-Hermitean matrices whose entries are constituted by the homogenized coefficients depending on the incident wave frequencies, whereby degenerate permeabilities can be accounted for. The homogenization procedure and the wave dispersion analysis have been implemented to explore the influence of the advection flow and the microstructure geometry on the wave propagation properties, namely the phase velocity and attenuation. Numerical examples are reported. (C) 2021 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Modelling of acoustic waves in homogenized fluid-saturated deforming poroelastic periodic structures under permanent flow
Popis výsledku anglicky
Acoustic waves in a poroelastic medium with periodic structure are studied with respect to permanent seepage flow which modifies the wave propagation. The effective medium model is obtained using the homogenization of the linearized fluid-structure interaction problem while respecting the advection phenomenon in the Navier-Stokes equations. For linearization of the micromodel, an acoustic approximation is introduced which yields a problem for the acoustic fluctuations of the solid displacements, the fluid velocity and pressure. An extended Darcy law of the macromodel involves the permeability and advection tensors which both depend on an assumed stationary perfusion of the porous structure. The monochromatic plane wave propagation is described in terms of two quasi-compressional and two quasi-shear modes. Two alternative problem formulations in the frequency domain are discussed. The one defined in terms of displacement and velocity fields leads to generalized eigenvalue problems involving non-Hermitean matrices whose entries are constituted by the homogenized coefficients depending on the incident wave frequencies, whereby degenerate permeabilities can be accounted for. The homogenization procedure and the wave dispersion analysis have been implemented to explore the influence of the advection flow and the microstructure geometry on the wave propagation properties, namely the phase velocity and attenuation. Numerical examples are reported. (C) 2021 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
ISSN
0377-0427
e-ISSN
—
Svazek periodika
394
Číslo periodika v rámci svazku
OCT 1 2021
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
27
Strana od-do
1-27
Kód UT WoS článku
000645665800013
EID výsledku v databázi Scopus
2-s2.0-85103932273