Preconditioning for linear systems arising from IgA discretized incompressible Navier–Stokes equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43961335" target="_blank" >RIV/49777513:23520/21:43961335 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.springer.com/gp/book/9783030498351" target="_blank" >https://www.springer.com/gp/book/9783030498351</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-49836-8_5" target="_blank" >10.1007/978-3-030-49836-8_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Preconditioning for linear systems arising from IgA discretized incompressible Navier–Stokes equations
Popis výsledku v původním jazyce
We deal with efficient techniques for numerical simulation of the incompressible fluid flow based on the Navier–Stokes equations discretized using the isogeometric analysis approach. Typically, the most time-consuming part of the simulation is solving the large saddle-point type linear systems arising from the discretization. These systems can be efficiently solved by Krylov subspace methods, but the choice of the preconditioner is crucial. In our study we test several preconditioners developed for the incompressible Navier–Stokes equations discretized by a finite element method, which can be found in the literature. We study their efficiency for the linear systems arising from the IgA discretization, where the matrix is usually less sparse compared to those from finite elements. Our aim is to develop a fast solver for a specific problem of flow in a water turbine. It brings several complications like periodic boundary conditions at nonparallel boundaries and computation in a rotating frame of reference. This makes the system matrix even less sparse with a more complicated sparsity pattern.
Název v anglickém jazyce
Preconditioning for linear systems arising from IgA discretized incompressible Navier–Stokes equations
Popis výsledku anglicky
We deal with efficient techniques for numerical simulation of the incompressible fluid flow based on the Navier–Stokes equations discretized using the isogeometric analysis approach. Typically, the most time-consuming part of the simulation is solving the large saddle-point type linear systems arising from the discretization. These systems can be efficiently solved by Krylov subspace methods, but the choice of the preconditioner is crucial. In our study we test several preconditioners developed for the incompressible Navier–Stokes equations discretized by a finite element method, which can be found in the literature. We study their efficiency for the linear systems arising from the IgA discretization, where the matrix is usually less sparse compared to those from finite elements. Our aim is to develop a fast solver for a specific problem of flow in a water turbine. It brings several complications like periodic boundary conditions at nonparallel boundaries and computation in a rotating frame of reference. This makes the system matrix even less sparse with a more complicated sparsity pattern.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Isogeometric Analysis and Applications 2018
ISBN
978-3-030-49835-1
ISSN
1439-7358
e-ISSN
2197-7100
Počet stran výsledku
21
Strana od-do
77-97
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Delft, Nizozemsko
Datum konání akce
23. 4. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—