Interpolation of spatial rotations for multibody kinematics and dynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962087" target="_blank" >RIV/49777513:23520/21:43962087 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpolation of spatial rotations for multibody kinematics and dynamics
Popis výsledku v původním jazyce
This paper deals with the interpolation of spatial rotations of a body in space for the purpose of multibody kinematics and dynamics. The most important methods of spatial rotation parametrization are summarized at first (e.g. Euler angles, Bryant angles, Euler parameters, quaternion representation). The main contribution of this paper is the usage of look up tables of a body configuration in 3D for the purpose of rotation interpolation with the advantage of computational costs reduction. Particularly, the spline interpolation is introduced and its special form of B-spline is explained. Final part of the paper deals with quaternion B-spline interpolation, whose advantage is the Cn continuity of interpolated data. In this paper C2 continuity was achieved.
Název v anglickém jazyce
Interpolation of spatial rotations for multibody kinematics and dynamics
Popis výsledku anglicky
This paper deals with the interpolation of spatial rotations of a body in space for the purpose of multibody kinematics and dynamics. The most important methods of spatial rotation parametrization are summarized at first (e.g. Euler angles, Bryant angles, Euler parameters, quaternion representation). The main contribution of this paper is the usage of look up tables of a body configuration in 3D for the purpose of rotation interpolation with the advantage of computational costs reduction. Particularly, the spline interpolation is introduced and its special form of B-spline is explained. Final part of the paper deals with quaternion B-spline interpolation, whose advantage is the Cn continuity of interpolated data. In this paper C2 continuity was achieved.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů