Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improving web user interface element detection using Faster R-CNN

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962817" target="_blank" >RIV/49777513:23520/21:43962817 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ceur-ws.org/Vol-2936/paper-117.pdf" target="_blank" >http://ceur-ws.org/Vol-2936/paper-117.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improving web user interface element detection using Faster R-CNN

  • Popis výsledku v původním jazyce

    Several challenges may arise when designing new user interfaces (UIs), e.g., because of communication between designers and developers, to which the detection of UI elements can help. The ImageCLEF DrawnUI 2021 challenge builds on the detection of such elements in two contest tasks: a Screenshot task that contains the website screenshot images with lots of noisy data, and a Wireframe task for detecting UI elements from hand-drawn proposals. This paper describes a simple algorithm based on the edge detection to filter noisy data from the website screenshots, and machine learning method which scored the first place in both tasks while having 0.628 and 0.900 mAP at 0.5 IoU in the Screenshot and Wireframe tasks. This method is based on the Faster R-CNN with a Feature Pyramid Network (FPN) that uses selected aspect ratios of anchor boxes according to the occurrences from the datasets. The code is available at https://github.com/vyskocj/ImageCLEFdrawnUI2021

  • Název v anglickém jazyce

    Improving web user interface element detection using Faster R-CNN

  • Popis výsledku anglicky

    Several challenges may arise when designing new user interfaces (UIs), e.g., because of communication between designers and developers, to which the detection of UI elements can help. The ImageCLEF DrawnUI 2021 challenge builds on the detection of such elements in two contest tasks: a Screenshot task that contains the website screenshot images with lots of noisy data, and a Wireframe task for detecting UI elements from hand-drawn proposals. This paper describes a simple algorithm based on the edge detection to filter noisy data from the website screenshots, and machine learning method which scored the first place in both tasks while having 0.628 and 0.900 mAP at 0.5 IoU in the Screenshot and Wireframe tasks. This method is based on the Faster R-CNN with a Feature Pyramid Network (FPN) that uses selected aspect ratios of anchor boxes according to the occurrences from the datasets. The code is available at https://github.com/vyskocj/ImageCLEFdrawnUI2021

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    1375-1386

  • Název nakladatele

    CEUR-WS

  • Místo vydání

    Aachen

  • Místo konání akce

    Bucharest, Romania(virtual)

  • Datum konání akce

    21. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku