UX and Machine Learning – Preprocessing of Audiovisual Data Using Computer Vision to Recognize UI Elements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F23%3A96163" target="_blank" >RIV/60460709:41110/23:96163 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.7160/aol.2023.150304" target="_blank" >https://doi.org/10.7160/aol.2023.150304</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7160/aol.2023.150304" target="_blank" >10.7160/aol.2023.150304</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
UX and Machine Learning – Preprocessing of Audiovisual Data Using Computer Vision to Recognize UI Elements
Popis výsledku v původním jazyce
This study explores the convergence of user experience (UX) and machine learning, particularly employing computer vision techniques to preprocess audiovisual data to detect user interface (UI) elements. With an emphasis on usability testing, the study introduces a novel approach for recognizing changes in UI screens within video recordings. The methodology involves a sequence of steps, including form prototype creation, laboratory experiments, data analysis, and computer vision tasks. The future aim is to automate the evaluation of user behavior during UX testing. This innovative approach is relevant to the agricultural domain, where specialized applications for precision agriculture, subsidy requests, and production reporting demand streamlined usability. The research introduces a frame extraction algorithm that identifies screen changes by analyzing pixel differences between consecutive frames. Additionally, the study employs YOLOv7, an efficient object detection model, to identify UI elements within the video frames. Results showcase successful screen change detection with minimal false negatives and acceptable false positives, showcasing the potential for enhanced automation in UX testing. The study’s implications lie in simplifying analysis processes, enhancing insights for design decisions, and fostering user-centric advancements in diverse sectors, including precision agriculture.
Název v anglickém jazyce
UX and Machine Learning – Preprocessing of Audiovisual Data Using Computer Vision to Recognize UI Elements
Popis výsledku anglicky
This study explores the convergence of user experience (UX) and machine learning, particularly employing computer vision techniques to preprocess audiovisual data to detect user interface (UI) elements. With an emphasis on usability testing, the study introduces a novel approach for recognizing changes in UI screens within video recordings. The methodology involves a sequence of steps, including form prototype creation, laboratory experiments, data analysis, and computer vision tasks. The future aim is to automate the evaluation of user behavior during UX testing. This innovative approach is relevant to the agricultural domain, where specialized applications for precision agriculture, subsidy requests, and production reporting demand streamlined usability. The research introduces a frame extraction algorithm that identifies screen changes by analyzing pixel differences between consecutive frames. Additionally, the study employs YOLOv7, an efficient object detection model, to identify UI elements within the video frames. Results showcase successful screen change detection with minimal false negatives and acceptable false positives, showcasing the potential for enhanced automation in UX testing. The study’s implications lie in simplifying analysis processes, enhancing insights for design decisions, and fostering user-centric advancements in diverse sectors, including precision agriculture.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AGRIS on-line Papers in Economics and Informatics
ISSN
1804-1930
e-ISSN
1804-1930
Svazek periodika
15
Číslo periodika v rámci svazku
03/2023
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
35-44
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85173683350