Influence of various constraints in topology optimization of tensegrity structures using mixed integer linear programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962932" target="_blank" >RIV/49777513:23520/21:43962932 - isvavai.cz</a>
Výsledek na webu
<a href="https://dspace5.zcu.cz/bitstream/11025/45917/2/CM2021_Conference_Proceedings-31-34.pdf" target="_blank" >https://dspace5.zcu.cz/bitstream/11025/45917/2/CM2021_Conference_Proceedings-31-34.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of various constraints in topology optimization of tensegrity structures using mixed integer linear programming
Popis výsledku v původním jazyce
Tensegrity structures are composed by two types of straight members – struts, that are in compression, and cables, that are in tension. The stability of such structures is given mainly by suitable members pretension and by appropriate positions of its nodes. In this paper, the possibilities of a topology optimization of tensegrity structures by means of a mixed integer linear programming approach are briefly described. A considerable number of various constraints can be used in the optimization process and their effects on the resulting tensegrity structure topology is further discussed. The goal is to select and formulate optimization constraints, that are suitable for topology optimization of tensegrity manipulators.
Název v anglickém jazyce
Influence of various constraints in topology optimization of tensegrity structures using mixed integer linear programming
Popis výsledku anglicky
Tensegrity structures are composed by two types of straight members – struts, that are in compression, and cables, that are in tension. The stability of such structures is given mainly by suitable members pretension and by appropriate positions of its nodes. In this paper, the possibilities of a topology optimization of tensegrity structures by means of a mixed integer linear programming approach are briefly described. A considerable number of various constraints can be used in the optimization process and their effects on the resulting tensegrity structure topology is further discussed. The goal is to select and formulate optimization constraints, that are suitable for topology optimization of tensegrity manipulators.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-21893S" target="_blank" >GA20-21893S: Mechatronické tensegrity pro energeticky efektivní lehké roboty</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů