Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Grammatical Evolution-Based Approach for Extracting Interpretable Glucose-Dynamics Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43964306" target="_blank" >RIV/49777513:23520/21:43964306 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://diabetes.zcu.cz" target="_blank" >https://diabetes.zcu.cz</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISCC53001.2021.9631483" target="_blank" >10.1109/ISCC53001.2021.9631483</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Grammatical Evolution-Based Approach for Extracting Interpretable Glucose-Dynamics Models

  • Popis výsledku v původním jazyce

    The quality of life of diabetic patients can be enhanced by devising a personalized control algorithm, integrated within an artificial pancreas, capable of dosing the insulin. A key action in the building of this artificial device is to conceive an efficient algorithm for forecasting future glucose levels. Within this paper, an evolutionary-based strategy, i.e., a Grammatical Evolution algorithm, is devised to deduce a personalized forecasting model to evaluate blood glucose values in the future on the basis of the past glucose measurements, and the knowledge of the basal and infused insulin levels and of the food consumption. The aim is to discover models that are not only interpretable but also with low complexity to be used within a control algorithm that is the main element of the artificial pancreas. A real-world database composed by Type 1 diabetic patients has been employed to evaluate the proposed evolutionary automatic procedure.

  • Název v anglickém jazyce

    Grammatical Evolution-Based Approach for Extracting Interpretable Glucose-Dynamics Models

  • Popis výsledku anglicky

    The quality of life of diabetic patients can be enhanced by devising a personalized control algorithm, integrated within an artificial pancreas, capable of dosing the insulin. A key action in the building of this artificial device is to conceive an efficient algorithm for forecasting future glucose levels. Within this paper, an evolutionary-based strategy, i.e., a Grammatical Evolution algorithm, is devised to deduce a personalized forecasting model to evaluate blood glucose values in the future on the basis of the past glucose measurements, and the knowledge of the basal and infused insulin levels and of the food consumption. The aim is to discover models that are not only interpretable but also with low complexity to be used within a control algorithm that is the main element of the artificial pancreas. A real-world database composed by Type 1 diabetic patients has been employed to evaluate the proposed evolutionary automatic procedure.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IEEE ISCC 2021 Proceedings

  • ISBN

    978-1-66542-744-9

  • ISSN

    1530-1346

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1-6

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Atény, Řecko &amp; virtuálně

  • Datum konání akce

    5. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000936276000111