Copula-based convolution for fast point-mass prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43962834" target="_blank" >RIV/49777513:23520/22:43962834 - isvavai.cz</a>
Výsledek na webu
<a href="https://dy.doi.org/10.1016/j.sigpro.2021.108367" target="_blank" >https://dy.doi.org/10.1016/j.sigpro.2021.108367</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sigpro.2021.108367" target="_blank" >10.1016/j.sigpro.2021.108367</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Copula-based convolution for fast point-mass prediction
Popis výsledku v původním jazyce
This paper deals with the state estimation of the nonlinear stochastic dynamic discrete-in-time models by a numerical solution to the Bayesian recursive relations represented by the point-mass filter (PMF). In particular, emphasis is placed on the development of the fast convolution, which reduces computational complexity of the PMF prediction step by the orders of magnitude for models with a diagonal form of the dynamic equation. The copula-based convolution decomposes the joint conditional density into the marginal densities (allowing efficient prediction) and an easy-to-calculate copula density function. As a consequence, it has the linear growth of its computational complexity with the state dimension, which is in a contrast with the exponential growth of the standard convolution complexity in PMF methods. The proposed fast convolution is analysed and illustrated in a numerical study for a static example and a dynamic terrain-aided navigation scenario. An exemplary implementation of the proposed convolution is provided along with the paper.
Název v anglickém jazyce
Copula-based convolution for fast point-mass prediction
Popis výsledku anglicky
This paper deals with the state estimation of the nonlinear stochastic dynamic discrete-in-time models by a numerical solution to the Bayesian recursive relations represented by the point-mass filter (PMF). In particular, emphasis is placed on the development of the fast convolution, which reduces computational complexity of the PMF prediction step by the orders of magnitude for models with a diagonal form of the dynamic equation. The copula-based convolution decomposes the joint conditional density into the marginal densities (allowing efficient prediction) and an easy-to-calculate copula density function. As a consequence, it has the linear growth of its computational complexity with the state dimension, which is in a contrast with the exponential growth of the standard convolution complexity in PMF methods. The proposed fast convolution is analysed and illustrated in a numerical study for a static example and a dynamic terrain-aided navigation scenario. An exemplary implementation of the proposed convolution is provided along with the paper.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GC20-06054J" target="_blank" >GC20-06054J: Inteligentní distribuované architektury pro odhad stavu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Signal Processing
ISSN
0165-1684
e-ISSN
1872-7557
Svazek periodika
192
Číslo periodika v rámci svazku
March 2022
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000731957400002
EID výsledku v databázi Scopus
2-s2.0-85118532393