Grid-based Bayesian Filters with Functional Decomposition of Transient Density
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00568617" target="_blank" >RIV/67985556:_____/23:00568617 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/49777513:23520/23:43969683
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10035470" target="_blank" >https://ieeexplore.ieee.org/document/10035470</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2023.3240359" target="_blank" >10.1109/TSP.2023.3240359</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Grid-based Bayesian Filters with Functional Decomposition of Transient Density
Popis výsledku v původním jazyce
The paper deals with the state estimation of nonlinear stochastic dynamic systems with special attention to grid-based Bayesian filters such as the point-mass filter (PMF) and the marginal particle filter (mPF). In the paper, a novel functional decomposition of the transient density describing the system dynamics is proposed. The decomposition approximates the transient density in a closed region. It is based on a non-negative matrix/tensor factorization and separates the density into functions of the future and current states. Such decomposition facilitates a thrifty calculation of the convolution involving the density, which is a performance bottleneck of the standard PMF/mPF implementations. The estimate quality and computational costs can be efficiently controlled by choosing an appropriate decomposition rank. The performance of the PMF with the transient density decomposition is illustrated in a terrain-aided navigation scenario and a problem involving a univariate non-stationary growth model.
Název v anglickém jazyce
Grid-based Bayesian Filters with Functional Decomposition of Transient Density
Popis výsledku anglicky
The paper deals with the state estimation of nonlinear stochastic dynamic systems with special attention to grid-based Bayesian filters such as the point-mass filter (PMF) and the marginal particle filter (mPF). In the paper, a novel functional decomposition of the transient density describing the system dynamics is proposed. The decomposition approximates the transient density in a closed region. It is based on a non-negative matrix/tensor factorization and separates the density into functions of the future and current states. Such decomposition facilitates a thrifty calculation of the convolution involving the density, which is a performance bottleneck of the standard PMF/mPF implementations. The estimate quality and computational costs can be efficiently controlled by choosing an appropriate decomposition rank. The performance of the PMF with the transient density decomposition is illustrated in a terrain-aided navigation scenario and a problem involving a univariate non-stationary growth model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-11101S" target="_blank" >GA22-11101S: Tenzorový rozklad v aktivní diagnostice poruch pro stochastické rozlehlé systémy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Signal Processing
ISSN
1053-587X
e-ISSN
1941-0476
Svazek periodika
71
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
92-104
Kód UT WoS článku
000935455200003
EID výsledku v databázi Scopus
2-s2.0-85148417650