Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Grid-based Bayesian Filters with Functional Decomposition of Transient Density

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00568617" target="_blank" >RIV/67985556:_____/23:00568617 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/49777513:23520/23:43969683

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10035470" target="_blank" >https://ieeexplore.ieee.org/document/10035470</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSP.2023.3240359" target="_blank" >10.1109/TSP.2023.3240359</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Grid-based Bayesian Filters with Functional Decomposition of Transient Density

  • Popis výsledku v původním jazyce

    The paper deals with the state estimation of nonlinear stochastic dynamic systems with special attention to grid-based Bayesian filters such as the point-mass filter (PMF) and the marginal particle filter (mPF). In the paper, a novel functional decomposition of the transient density describing the system dynamics is proposed. The decomposition approximates the transient density in a closed region. It is based on a non-negative matrix/tensor factorization and separates the density into functions of the future and current states. Such decomposition facilitates a thrifty calculation of the convolution involving the density, which is a performance bottleneck of the standard PMF/mPF implementations. The estimate quality and computational costs can be efficiently controlled by choosing an appropriate decomposition rank. The performance of the PMF with the transient density decomposition is illustrated in a terrain-aided navigation scenario and a problem involving a univariate non-stationary growth model.

  • Název v anglickém jazyce

    Grid-based Bayesian Filters with Functional Decomposition of Transient Density

  • Popis výsledku anglicky

    The paper deals with the state estimation of nonlinear stochastic dynamic systems with special attention to grid-based Bayesian filters such as the point-mass filter (PMF) and the marginal particle filter (mPF). In the paper, a novel functional decomposition of the transient density describing the system dynamics is proposed. The decomposition approximates the transient density in a closed region. It is based on a non-negative matrix/tensor factorization and separates the density into functions of the future and current states. Such decomposition facilitates a thrifty calculation of the convolution involving the density, which is a performance bottleneck of the standard PMF/mPF implementations. The estimate quality and computational costs can be efficiently controlled by choosing an appropriate decomposition rank. The performance of the PMF with the transient density decomposition is illustrated in a terrain-aided navigation scenario and a problem involving a univariate non-stationary growth model.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-11101S" target="_blank" >GA22-11101S: Tenzorový rozklad v aktivní diagnostice poruch pro stochastické rozlehlé systémy</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Signal Processing

  • ISSN

    1053-587X

  • e-ISSN

    1941-0476

  • Svazek periodika

    71

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    92-104

  • Kód UT WoS článku

    000935455200003

  • EID výsledku v databázi Scopus

    2-s2.0-85148417650