Homogenization of large deforming fluid-saturated porous structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43964087" target="_blank" >RIV/49777513:23520/22:43964087 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.camwa.2022.01.036" target="_blank" >https://doi.org/10.1016/j.camwa.2022.01.036</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.camwa.2022.01.036" target="_blank" >10.1016/j.camwa.2022.01.036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Homogenization of large deforming fluid-saturated porous structures
Popis výsledku v původním jazyce
The two-scale computational homogenization method is proposed for modeling of locally periodic fluid-saturated media subjected to a large deformation induced by quasistatic loading. The periodic heterogeneities are relevant to the mesoscopic scale at which a double porous medium constituted by a hyperelastic skeleton and an incompressible viscous fluid is featured by large contrasts in the permeability. Within the Eulerian framework related to the current deformed configuration, the two-scale homogenization approach is applied to a linearized model discretized in time, being associated with an incremental formulation. For this, the equilibrium equation and the mass conservation expressed in the spatial configuration are differentiated using the material derivative with respect to a convection velocity field. The homogenization procedure of the linearized equations provides effective (homogenized) material properties which are computed to constitute the incremental macroscopic problem. The coupled algorithm for the multiscale problem is implemented using the finite element method. Illustrative 2D numerical simulations of a poroelastic medium are presented including a simple validation test.
Název v anglickém jazyce
Homogenization of large deforming fluid-saturated porous structures
Popis výsledku anglicky
The two-scale computational homogenization method is proposed for modeling of locally periodic fluid-saturated media subjected to a large deformation induced by quasistatic loading. The periodic heterogeneities are relevant to the mesoscopic scale at which a double porous medium constituted by a hyperelastic skeleton and an incompressible viscous fluid is featured by large contrasts in the permeability. Within the Eulerian framework related to the current deformed configuration, the two-scale homogenization approach is applied to a linearized model discretized in time, being associated with an incremental formulation. For this, the equilibrium equation and the mass conservation expressed in the spatial configuration are differentiated using the material derivative with respect to a convection velocity field. The homogenization procedure of the linearized equations provides effective (homogenized) material properties which are computed to constitute the incremental macroscopic problem. The coupled algorithm for the multiscale problem is implemented using the finite element method. Illustrative 2D numerical simulations of a poroelastic medium are presented including a simple validation test.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS & MATHEMATICS WITH APPLICATIONS
ISSN
0898-1221
e-ISSN
1873-7668
Svazek periodika
110
Číslo periodika v rámci svazku
15 March 2022
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
24
Strana od-do
40-63
Kód UT WoS článku
000789882400003
EID výsledku v databázi Scopus
2-s2.0-85124237442