Modeling large-deforming fluid-saturated porous media using an Eulerian incremental formulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932384" target="_blank" >RIV/49777513:23520/17:43932384 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.advengsoft.2016.11.003" target="_blank" >https://doi.org/10.1016/j.advengsoft.2016.11.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.advengsoft.2016.11.003" target="_blank" >10.1016/j.advengsoft.2016.11.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling large-deforming fluid-saturated porous media using an Eulerian incremental formulation
Popis výsledku v původním jazyce
The paper deals with modeling fluid saturated porous media subject to large deformation. An Eulerian incremental formulation is derived using the problem imposed in the spatial configuration in terms of the equilibrium equation and the mass conservation. Perturbation of the hyperelastic porous medium is described by the Biot model which involves poroelastic coefficients and the permeability governing the Darcy flow. Using the material derivative with respect to a convection velocity field we obtain the rate formulation which allows for linearization of the residuum function. For a given time discretization with backward finite difference approximation of the time derivatives, two incremental problems are obtained which constitute the predictor and corrector steps of the implicit time-integration scheme. Conforming mixed finite element approximation in space is used. Validation of the numerical model implemented in the SfePy code is reported for an isotropic medium with a hyperelastic solid phase. The proposed linearization scheme is motivated by the two-scale homogenization which will provide the local material poroelastic coefficients involved in the incremental formulation.
Název v anglickém jazyce
Modeling large-deforming fluid-saturated porous media using an Eulerian incremental formulation
Popis výsledku anglicky
The paper deals with modeling fluid saturated porous media subject to large deformation. An Eulerian incremental formulation is derived using the problem imposed in the spatial configuration in terms of the equilibrium equation and the mass conservation. Perturbation of the hyperelastic porous medium is described by the Biot model which involves poroelastic coefficients and the permeability governing the Darcy flow. Using the material derivative with respect to a convection velocity field we obtain the rate formulation which allows for linearization of the residuum function. For a given time discretization with backward finite difference approximation of the time derivatives, two incremental problems are obtained which constitute the predictor and corrector steps of the implicit time-integration scheme. Conforming mixed finite element approximation in space is used. Validation of the numerical model implemented in the SfePy code is reported for an isotropic medium with a hyperelastic solid phase. The proposed linearization scheme is motivated by the two-scale homogenization which will provide the local material poroelastic coefficients involved in the incremental formulation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Engineering Software
ISSN
0965-9978
e-ISSN
—
Svazek periodika
113
Číslo periodika v rámci svazku
November 2017
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
84-95
Kód UT WoS článku
000413675600010
EID výsledku v databázi Scopus
2-s2.0-85007443297