Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predicting glucose level with an adapted branch predictor

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43964869" target="_blank" >RIV/49777513:23520/22:43964869 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.compbiomed.2022.105388" target="_blank" >https://doi.org/10.1016/j.compbiomed.2022.105388</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compbiomed.2022.105388" target="_blank" >10.1016/j.compbiomed.2022.105388</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predicting glucose level with an adapted branch predictor

  • Popis výsledku v původním jazyce

    Background and objective: Diabetes mellitus manifests as prolonged elevated blood glucose levels resulting from impaired insulin production. Such high glucose levels over a long period of time damage multiple internal organs. To mitigate this condition, researchers and engineers have developed the closed loop artificial pankreas consisting of a continuous glucose monitor and an insulin pump connected via a microcontroller or smartphone. A problem, however, is how to accurately predict short term future glucose levels in order to exert efficient glucose-level control. Much work in the literature focuses on least prediction error as a key metric and therefore pursues complex prediction methods such a deep learning. Such an approach neglects other important and significant design issues such as method complexity (impacting interpretability and safety), hardware requirements for low-power devices such as the insulin pump, the required amount of input data for training (potentially rendering the method infeasible for new patients), and the fact that very small improvements in accuracy may not have significant clinical benefit. Methods: We propose a novel low-complexity, explainable blood glucose prediction method derived from the Intel P6 branch predictor algorithm. We use Meta-Differential Evolution to determine predictor parameters on training data splits of the benchmark datasets we use. A comparison is made between our new algorithm and a state-of-the-art deep-learning method for blood glucose level prediction. Results: To evaluate the new method, the Blood Glucose Level Prediction Challenge benchmark dataset is utilised. On the official test data split after training, the state-of-the-art deep learning method predicted glucose levels 30 min ahead of current time with 96.3% of predicted glucose levels having relative error less than 30% (which is equivalent to the safe zone of the Surveillance Error Grid). Our simpler, interpretable approach prolonged the prediction horizon by another 5 min with 95.8% of predicted glucose levels of all patients having relative error less than 30%. Conclusions: When considering predictive performance as assessed using the Blood Glucose Level Prediction Challenge benchmark dataset and Surveillance Error Grid metrics, we found that the new algorithm delivered comparable predictive accuracy performance, while operating only on the lucose-level signal with considerably less computational complexity.

  • Název v anglickém jazyce

    Predicting glucose level with an adapted branch predictor

  • Popis výsledku anglicky

    Background and objective: Diabetes mellitus manifests as prolonged elevated blood glucose levels resulting from impaired insulin production. Such high glucose levels over a long period of time damage multiple internal organs. To mitigate this condition, researchers and engineers have developed the closed loop artificial pankreas consisting of a continuous glucose monitor and an insulin pump connected via a microcontroller or smartphone. A problem, however, is how to accurately predict short term future glucose levels in order to exert efficient glucose-level control. Much work in the literature focuses on least prediction error as a key metric and therefore pursues complex prediction methods such a deep learning. Such an approach neglects other important and significant design issues such as method complexity (impacting interpretability and safety), hardware requirements for low-power devices such as the insulin pump, the required amount of input data for training (potentially rendering the method infeasible for new patients), and the fact that very small improvements in accuracy may not have significant clinical benefit. Methods: We propose a novel low-complexity, explainable blood glucose prediction method derived from the Intel P6 branch predictor algorithm. We use Meta-Differential Evolution to determine predictor parameters on training data splits of the benchmark datasets we use. A comparison is made between our new algorithm and a state-of-the-art deep-learning method for blood glucose level prediction. Results: To evaluate the new method, the Blood Glucose Level Prediction Challenge benchmark dataset is utilised. On the official test data split after training, the state-of-the-art deep learning method predicted glucose levels 30 min ahead of current time with 96.3% of predicted glucose levels having relative error less than 30% (which is equivalent to the safe zone of the Surveillance Error Grid). Our simpler, interpretable approach prolonged the prediction horizon by another 5 min with 95.8% of predicted glucose levels of all patients having relative error less than 30%. Conclusions: When considering predictive performance as assessed using the Blood Glucose Level Prediction Challenge benchmark dataset and Surveillance Error Grid metrics, we found that the new algorithm delivered comparable predictive accuracy performance, while operating only on the lucose-level signal with considerably less computational complexity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF18_054%2F0014627" target="_blank" >EF18_054/0014627: Rozvoj kapacit a prostředí pro posílení mezinárodní, mezisektorové a mezioborové spolupráce ZČU</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers in Biology and Medicine

  • ISSN

    0010-4825

  • e-ISSN

  • Svazek periodika

    145

  • Číslo periodika v rámci svazku

    JUN 2022

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    7

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000821045900007

  • EID výsledku v databázi Scopus

    2-s2.0-85126987017