Sequential Boolean Background Estimation and Phasor Based Objects Segmentation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43965715" target="_blank" >RIV/49777513:23520/22:43965715 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11025/48792" target="_blank" >http://hdl.handle.net/11025/48792</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sequential Boolean Background Estimation and Phasor Based Objects Segmentation
Popis výsledku v původním jazyce
Object to background segmentation is the basic image processing and analysis step in many tasks: feature selection and extraction, detection, tracking, region of interest for neural network training, classification, etology (Urbanova et al. [2020]). For the behavior analysis, for example of swarms, herds, flocks, shoals, or crowds, the segmentation is carried out on the frames or images from video or time lapse photography, respectively. Segmentation, in this case, requires distinction of the moving objects from the actual background. Therefore, it is useful to generates the estimated background image for automatic segmentation. To evaluate the differences between estimated background and given image/frame, and fulfill the segmentation, metric based on phasor analyssis is adopted.
Název v anglickém jazyce
Sequential Boolean Background Estimation and Phasor Based Objects Segmentation
Popis výsledku anglicky
Object to background segmentation is the basic image processing and analysis step in many tasks: feature selection and extraction, detection, tracking, region of interest for neural network training, classification, etology (Urbanova et al. [2020]). For the behavior analysis, for example of swarms, herds, flocks, shoals, or crowds, the segmentation is carried out on the frames or images from video or time lapse photography, respectively. Segmentation, in this case, requires distinction of the moving objects from the actual background. Therefore, it is useful to generates the estimated background image for automatic segmentation. To evaluate the differences between estimated background and given image/frame, and fulfill the segmentation, metric based on phasor analyssis is adopted.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů