Evaluating Attribution Methods for Explainable NLP with Transformers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43965893" target="_blank" >RIV/49777513:23520/22:43965893 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-16270-1_1" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-16270-1_1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-16270-1_1" target="_blank" >10.1007/978-3-031-16270-1_1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating Attribution Methods for Explainable NLP with Transformers
Popis výsledku v původním jazyce
This paper describes the experimental evaluation of several attribution methods on two NLP tasks: Sentiment analysis and multi-label document classification. Our motivation is to find the best method to use with Transformers to interpret model decisions. For this purpose, we introduce two new evaluation datasets. The first one is derived from Stanford Sentiment Treebank, where the sentiment of individual words is annotated along with the sentiment of the whole sentence. The second dataset comes from Czech Text Document Corpus, where we added keyword information assigned to each category. The keywords were manually assigned to each document and automatically propagated to categories via PMI. We evaluate each attribution method on several models of different sizes. The evaluation results are reasonably consistent across all models and both datasets. It indicates that both datasets with proposed evaluation metrics are suitable for interpretability evaluation. We show how the attribution methods behave concerning model size and task. We also consider practical applications -- we show that while some methods perform well, they can be replaced with slightly worse-performing methods requiring significantly less time to compute.
Název v anglickém jazyce
Evaluating Attribution Methods for Explainable NLP with Transformers
Popis výsledku anglicky
This paper describes the experimental evaluation of several attribution methods on two NLP tasks: Sentiment analysis and multi-label document classification. Our motivation is to find the best method to use with Transformers to interpret model decisions. For this purpose, we introduce two new evaluation datasets. The first one is derived from Stanford Sentiment Treebank, where the sentiment of individual words is annotated along with the sentiment of the whole sentence. The second dataset comes from Czech Text Document Corpus, where we added keyword information assigned to each category. The keywords were manually assigned to each document and automatically propagated to categories via PMI. We evaluate each attribution method on several models of different sizes. The evaluation results are reasonably consistent across all models and both datasets. It indicates that both datasets with proposed evaluation metrics are suitable for interpretability evaluation. We show how the attribution methods behave concerning model size and task. We also consider practical applications -- we show that while some methods perform well, they can be replaced with slightly worse-performing methods requiring significantly less time to compute.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TL03000152" target="_blank" >TL03000152: Umělá inteligence, média a právo</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
25th International Conference, TSD 2022, Brno, Czech Republic, September 6–9, 2022, Proceedings
ISBN
978-3-031-16269-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
1-12
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Brno
Datum konání akce
6. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000866222300001