Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluating Attribution Methods for Explainable NLP with Transformers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43965893" target="_blank" >RIV/49777513:23520/22:43965893 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-16270-1_1" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-16270-1_1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-16270-1_1" target="_blank" >10.1007/978-3-031-16270-1_1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluating Attribution Methods for Explainable NLP with Transformers

  • Popis výsledku v původním jazyce

    This paper describes the experimental evaluation of several attribution methods on two NLP tasks: Sentiment analysis and multi-label document classification. Our motivation is to find the best method to use with Transformers to interpret model decisions. For this purpose, we introduce two new evaluation datasets. The first one is derived from Stanford Sentiment Treebank, where the sentiment of individual words is annotated along with the sentiment of the whole sentence. The second dataset comes from Czech Text Document Corpus, where we added keyword information assigned to each category. The keywords were manually assigned to each document and automatically propagated to categories via PMI. We evaluate each attribution method on several models of different sizes. The evaluation results are reasonably consistent across all models and both datasets. It indicates that both datasets with proposed evaluation metrics are suitable for interpretability evaluation. We show how the attribution methods behave concerning model size and task. We also consider practical applications -- we show that while some methods perform well, they can be replaced with slightly worse-performing methods requiring significantly less time to compute.

  • Název v anglickém jazyce

    Evaluating Attribution Methods for Explainable NLP with Transformers

  • Popis výsledku anglicky

    This paper describes the experimental evaluation of several attribution methods on two NLP tasks: Sentiment analysis and multi-label document classification. Our motivation is to find the best method to use with Transformers to interpret model decisions. For this purpose, we introduce two new evaluation datasets. The first one is derived from Stanford Sentiment Treebank, where the sentiment of individual words is annotated along with the sentiment of the whole sentence. The second dataset comes from Czech Text Document Corpus, where we added keyword information assigned to each category. The keywords were manually assigned to each document and automatically propagated to categories via PMI. We evaluate each attribution method on several models of different sizes. The evaluation results are reasonably consistent across all models and both datasets. It indicates that both datasets with proposed evaluation metrics are suitable for interpretability evaluation. We show how the attribution methods behave concerning model size and task. We also consider practical applications -- we show that while some methods perform well, they can be replaced with slightly worse-performing methods requiring significantly less time to compute.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TL03000152" target="_blank" >TL03000152: Umělá inteligence, média a právo</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    25th International Conference, TSD 2022, Brno, Czech Republic, September 6–9, 2022, Proceedings

  • ISBN

    978-3-031-16269-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Brno

  • Datum konání akce

    6. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000866222300001