Danish Fungi 2020 - Not Just Another Image Recognition Dataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966004" target="_blank" >RIV/49777513:23520/22:43966004 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/22:00362997
Výsledek na webu
<a href="https://openaccess.thecvf.com/content/WACV2022/html/Picek_Danish_Fungi_2020_-_Not_Just_Another_Image_Recognition_Dataset_WACV_2022_paper.html" target="_blank" >https://openaccess.thecvf.com/content/WACV2022/html/Picek_Danish_Fungi_2020_-_Not_Just_Another_Image_Recognition_Dataset_WACV_2022_paper.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV51458.2022.00334" target="_blank" >10.1109/WACV51458.2022.00334</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Danish Fungi 2020 - Not Just Another Image Recognition Dataset
Popis výsledku v původním jazyce
We introduce a novel fine-grained dataset and bench-mark, the Danish Fungi 2020 (DF20). The dataset, constructed from observations submitted to the Atlas of Danish Fungi, is unique in its taxonomy-accurate class labels, small number of errors, highly unbalanced long-tailed class distribution, rich observation metadata, and well-defined class hierarchy. DF20 has zero overlap with ImageNet, al-lowing unbiased comparison of models fine-tuned from publicly available ImageNet checkpoints. The proposed evaluation protocol enables testing the ability to improve classification using metadata - e.g. precise geographic location, habitat, and substrate, facilitates classifier calibration testing, and finally allows to study the impact of the device settings on the classification performance. Experiments using Convolutional Neural Networks (CNN) and the recent Vision Transformers (ViT) show that DF20 presents a challenging task. Interestingly, ViT achieves results su-perior to CNN baselines with 80.45% accuracy and 0.743 macro F1 score, reducing the CNN error by 9% and 12% respectively. A simple procedure for including metadata into the decision process improves the classification accuracy by more than 2.95 percentage points, reducing the error rate by 15%. The source code for all methods and experiments is available at https://sites.google.com/view/danish-fungi-dataset.
Název v anglickém jazyce
Danish Fungi 2020 - Not Just Another Image Recognition Dataset
Popis výsledku anglicky
We introduce a novel fine-grained dataset and bench-mark, the Danish Fungi 2020 (DF20). The dataset, constructed from observations submitted to the Atlas of Danish Fungi, is unique in its taxonomy-accurate class labels, small number of errors, highly unbalanced long-tailed class distribution, rich observation metadata, and well-defined class hierarchy. DF20 has zero overlap with ImageNet, al-lowing unbiased comparison of models fine-tuned from publicly available ImageNet checkpoints. The proposed evaluation protocol enables testing the ability to improve classification using metadata - e.g. precise geographic location, habitat, and substrate, facilitates classifier calibration testing, and finally allows to study the impact of the device settings on the classification performance. Experiments using Convolutional Neural Networks (CNN) and the recent Vision Transformers (ViT) show that DF20 presents a challenging task. Interestingly, ViT achieves results su-perior to CNN baselines with 80.45% accuracy and 0.743 macro F1 score, reducing the CNN error by 9% and 12% respectively. A simple procedure for including metadata into the decision process improves the classification accuracy by more than 2.95 percentage points, reducing the error rate by 15%. The source code for all methods and experiments is available at https://sites.google.com/view/danish-fungi-dataset.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022
ISBN
978-1-66540-915-5
ISSN
2472-6737
e-ISSN
2642-9381
Počet stran výsledku
11
Strana od-do
3281-3291
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Waikoloa, Hawai, Spojené státy
Datum konání akce
4. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000800471203036