Plant recognition by AI: Deep neural nets, transformers, and kNN in deep embeddings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966116" target="_blank" >RIV/49777513:23520/22:43966116 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/22:00363001
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/fpls.2022.787527/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fpls.2022.787527/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fpls.2022.787527" target="_blank" >10.3389/fpls.2022.787527</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Plant recognition by AI: Deep neural nets, transformers, and kNN in deep embeddings
Popis výsledku v původním jazyce
The article reviews and benchmarks machine learning methods for automatic image-based plant species recognition and proposes a novel retrieval-based method for recognition by nearest neighbor classification in a deep embedding space. The image retrieval method relies on a model trained via the Recall@k surrogate loss. State-of-the-art approaches to image classification, based on Convolutional Neural Networks (CNN) and Vision Transformers (ViT), are benchmarked and compared with the proposed image retrieval-based method. The impact of performance-enhancing techniques, e.g., class prior adaptation, image augmentations, learning rate scheduling, and loss functions, is studied. The evaluation is carried out on the PlantCLEF 2017, the ExpertLifeCLEF 2018, and the iNaturalist 2018 Datasets-the largest publicly available datasets for plant recognition. The evaluation of CNN and ViT classifiers shows a gradual improvement in classification accuracy. The current state-of-the-art Vision Transformer model, ViT-Large/16, achieves 91.15% and 83.54% accuracy on the PlantCLEF 2017 and ExpertLifeCLEF 2018 test sets, respectively; the best CNN model (ResNeSt-269e) error rate dropped by 22.91% and 28.34%. Apart from that, additional tricks increased the performance for the ViT-Base/32 by 3.72% on ExpertLifeCLEF 2018 and by 4.67% on PlantCLEF 2017. The retrieval approach achieved superior performance in all measured scenarios with accuracy margins of 0.28%, 4.13%, and 10.25% on ExpertLifeCLEF 2018, PlantCLEF 2017, and iNat2018-Plantae, respectively.
Název v anglickém jazyce
Plant recognition by AI: Deep neural nets, transformers, and kNN in deep embeddings
Popis výsledku anglicky
The article reviews and benchmarks machine learning methods for automatic image-based plant species recognition and proposes a novel retrieval-based method for recognition by nearest neighbor classification in a deep embedding space. The image retrieval method relies on a model trained via the Recall@k surrogate loss. State-of-the-art approaches to image classification, based on Convolutional Neural Networks (CNN) and Vision Transformers (ViT), are benchmarked and compared with the proposed image retrieval-based method. The impact of performance-enhancing techniques, e.g., class prior adaptation, image augmentations, learning rate scheduling, and loss functions, is studied. The evaluation is carried out on the PlantCLEF 2017, the ExpertLifeCLEF 2018, and the iNaturalist 2018 Datasets-the largest publicly available datasets for plant recognition. The evaluation of CNN and ViT classifiers shows a gradual improvement in classification accuracy. The current state-of-the-art Vision Transformer model, ViT-Large/16, achieves 91.15% and 83.54% accuracy on the PlantCLEF 2017 and ExpertLifeCLEF 2018 test sets, respectively; the best CNN model (ResNeSt-269e) error rate dropped by 22.91% and 28.34%. Apart from that, additional tricks increased the performance for the ViT-Base/32 by 3.72% on ExpertLifeCLEF 2018 and by 4.67% on PlantCLEF 2017. The retrieval approach achieved superior performance in all measured scenarios with accuracy margins of 0.28%, 4.13%, and 10.25% on ExpertLifeCLEF 2018, PlantCLEF 2017, and iNat2018-Plantae, respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Plant Science
ISSN
1664-462X
e-ISSN
1664-462X
Svazek periodika
13
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000868264700001
EID výsledku v databázi Scopus
2-s2.0-85139567145