WSports-50: An Image Dataset for Women’s Sport Action Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021632" target="_blank" >RIV/62690094:18450/24:50021632 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-981-97-2614-1_32" target="_blank" >http://dx.doi.org/10.1007/978-981-97-2614-1_32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-2614-1_32" target="_blank" >10.1007/978-981-97-2614-1_32</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
WSports-50: An Image Dataset for Women’s Sport Action Classification
Popis výsledku v původním jazyce
Sport action recognition is an interesting area in computer vision. Categorization of sport actions, representing difficult and complex body postures, is regarded as a fine-grained visual classification problem. The Convolutional Neural Networks (CNNs) have attained enhanced performance over conventional feature descriptors in recognizing various sport activities. In general, though decent improvement has been gained using deep learning for sport action recognition, however, recognition of women’s sport activities is not widely explored. Even, no benchmark dataset depicting women’s sport action with sufficient variations is available yet for study. Hence, fine-grained image classification of diverse sport categories involving female/women athletics requires immediate research attention. To overcome this limitation, this paper proposes an image dataset comprising worldwide popular 50 sport categories of women players only. A simple deep learning model is proposed that extracts the high-level deep features using a backbone CNN. Then, these features are pooled from a collection of regular regions representing local discriminative information. The spatial pyramid pooling is applied for mining semantic information and enhancing feature aggregation for classification. The proposed method has achieved satisfactory performance on the Women Sports dataset using four standard backbone CNNs. Moreover, our method has achieved better accuracy on the Yoga-82 pose recognition dataset with a significant margin, e.g., 11.6% gain using ResNet-50 base CNN. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Název v anglickém jazyce
WSports-50: An Image Dataset for Women’s Sport Action Classification
Popis výsledku anglicky
Sport action recognition is an interesting area in computer vision. Categorization of sport actions, representing difficult and complex body postures, is regarded as a fine-grained visual classification problem. The Convolutional Neural Networks (CNNs) have attained enhanced performance over conventional feature descriptors in recognizing various sport activities. In general, though decent improvement has been gained using deep learning for sport action recognition, however, recognition of women’s sport activities is not widely explored. Even, no benchmark dataset depicting women’s sport action with sufficient variations is available yet for study. Hence, fine-grained image classification of diverse sport categories involving female/women athletics requires immediate research attention. To overcome this limitation, this paper proposes an image dataset comprising worldwide popular 50 sport categories of women players only. A simple deep learning model is proposed that extracts the high-level deep features using a backbone CNN. Then, these features are pooled from a collection of regular regions representing local discriminative information. The spatial pyramid pooling is applied for mining semantic information and enhancing feature aggregation for classification. The proposed method has achieved satisfactory performance on the Women Sports dataset using four standard backbone CNNs. Moreover, our method has achieved better accuracy on the Yoga-82 pose recognition dataset with a significant margin, e.g., 11.6% gain using ResNet-50 base CNN. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-981-9726-13-4
ISSN
2367-3370
e-ISSN
—
Počet stran výsledku
13
Strana od-do
457-469
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Singapore
Místo konání akce
Mandi
Datum konání akce
16. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—