Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

WSports-50: An Image Dataset for Women’s Sport Action Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021632" target="_blank" >RIV/62690094:18450/24:50021632 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-981-97-2614-1_32" target="_blank" >http://dx.doi.org/10.1007/978-981-97-2614-1_32</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-97-2614-1_32" target="_blank" >10.1007/978-981-97-2614-1_32</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    WSports-50: An Image Dataset for Women’s Sport Action Classification

  • Popis výsledku v původním jazyce

    Sport action recognition is an interesting area in computer vision. Categorization of sport actions, representing difficult and complex body postures, is regarded as a fine-grained visual classification problem. The Convolutional Neural Networks (CNNs) have attained enhanced performance over conventional feature descriptors in recognizing various sport activities. In general, though decent improvement has been gained using deep learning for sport action recognition, however, recognition of women’s sport activities is not widely explored. Even, no benchmark dataset depicting women’s sport action with sufficient variations is available yet for study. Hence, fine-grained image classification of diverse sport categories involving female/women athletics requires immediate research attention. To overcome this limitation, this paper proposes an image dataset comprising worldwide popular 50 sport categories of women players only. A simple deep learning model is proposed that extracts the high-level deep features using a backbone CNN. Then, these features are pooled from a collection of regular regions representing local discriminative information. The spatial pyramid pooling is applied for mining semantic information and enhancing feature aggregation for classification. The proposed method has achieved satisfactory performance on the Women Sports dataset using four standard backbone CNNs. Moreover, our method has achieved better accuracy on the Yoga-82 pose recognition dataset with a significant margin, e.g., 11.6% gain using ResNet-50 base CNN. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

  • Název v anglickém jazyce

    WSports-50: An Image Dataset for Women’s Sport Action Classification

  • Popis výsledku anglicky

    Sport action recognition is an interesting area in computer vision. Categorization of sport actions, representing difficult and complex body postures, is regarded as a fine-grained visual classification problem. The Convolutional Neural Networks (CNNs) have attained enhanced performance over conventional feature descriptors in recognizing various sport activities. In general, though decent improvement has been gained using deep learning for sport action recognition, however, recognition of women’s sport activities is not widely explored. Even, no benchmark dataset depicting women’s sport action with sufficient variations is available yet for study. Hence, fine-grained image classification of diverse sport categories involving female/women athletics requires immediate research attention. To overcome this limitation, this paper proposes an image dataset comprising worldwide popular 50 sport categories of women players only. A simple deep learning model is proposed that extracts the high-level deep features using a backbone CNN. Then, these features are pooled from a collection of regular regions representing local discriminative information. The spatial pyramid pooling is applied for mining semantic information and enhancing feature aggregation for classification. The proposed method has achieved satisfactory performance on the Women Sports dataset using four standard backbone CNNs. Moreover, our method has achieved better accuracy on the Yoga-82 pose recognition dataset with a significant margin, e.g., 11.6% gain using ResNet-50 base CNN. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Networks and Systems

  • ISBN

    978-981-9726-13-4

  • ISSN

    2367-3370

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    457-469

  • Název nakladatele

    Springer Science and Business Media Deutschland GmbH

  • Místo vydání

    Singapore

  • Místo konání akce

    Mandi

  • Datum konání akce

    16. 10. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku