Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Graph Convolutional Network for Visual Categorization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021806" target="_blank" >RIV/62690094:18450/24:50021806 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-981-97-6489-1_19" target="_blank" >http://dx.doi.org/10.1007/978-981-97-6489-1_19</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-97-6489-1_19" target="_blank" >10.1007/978-981-97-6489-1_19</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Graph Convolutional Network for Visual Categorization

  • Popis výsledku v původním jazyce

    The Convolutional Neural Networks (CNNs) have attained enhanced performance over conventional feature descriptors for image classification. Recently, Graph Convolutional Networks (GCNs) have also been witnessed in achieving improved performances for visual classification in various domains. A typical GCN is pertinent for propagating deep features using graph-based message passing methods. There are several domains such as the disease diagnosis of humans and plants where GCN could be explored for further performance enhancement. Thus, ample research attention is essential for solving different kinds of visual classification problems. In this direction, this work integrates the benefits of CNN and GCN for improving the feature representation by building a spatial relation using a GCN. In this work, a simple deep learning model is proposed that extracts the high-level deep features using a backbone CNN. Then, a GCN is applied for enhancing feature representation capabilities further for image classification. The proposed method has achieved improved performances on seven benchmark public datasets representing dance postures, hand shapes, agriculture, medical imaging, and aerial scene classification. The proposed method is developed using four different CNN backbones. Particularly, the proposed method based on ResNet-50 backbone has attained 89.98% accuracy on Dance-12, 90.34% accuracy on REST hand shape, 94.06% accuracy on Kvasir, and 75.89% accuracy on ISIC skin cancer, 91.73% accuracy on AID aerial scene classification, and 95.24% accuracy on PlantPathology datasets. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

  • Název v anglickém jazyce

    A Graph Convolutional Network for Visual Categorization

  • Popis výsledku anglicky

    The Convolutional Neural Networks (CNNs) have attained enhanced performance over conventional feature descriptors for image classification. Recently, Graph Convolutional Networks (GCNs) have also been witnessed in achieving improved performances for visual classification in various domains. A typical GCN is pertinent for propagating deep features using graph-based message passing methods. There are several domains such as the disease diagnosis of humans and plants where GCN could be explored for further performance enhancement. Thus, ample research attention is essential for solving different kinds of visual classification problems. In this direction, this work integrates the benefits of CNN and GCN for improving the feature representation by building a spatial relation using a GCN. In this work, a simple deep learning model is proposed that extracts the high-level deep features using a backbone CNN. Then, a GCN is applied for enhancing feature representation capabilities further for image classification. The proposed method has achieved improved performances on seven benchmark public datasets representing dance postures, hand shapes, agriculture, medical imaging, and aerial scene classification. The proposed method is developed using four different CNN backbones. Particularly, the proposed method based on ResNet-50 backbone has attained 89.98% accuracy on Dance-12, 90.34% accuracy on REST hand shape, 94.06% accuracy on Kvasir, and 75.89% accuracy on ISIC skin cancer, 91.73% accuracy on AID aerial scene classification, and 95.24% accuracy on PlantPathology datasets. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Networks and Systems

  • ISBN

    978-981-9764-88-4

  • ISSN

    2367-3370

  • e-ISSN

  • Počet stran výsledku

    14

  • Strana od-do

    257-270

  • Název nakladatele

    Springer Science and Business Media Deutschland GmbH

  • Místo vydání

    Singapore

  • Místo konání akce

    Aizawl

  • Datum konání akce

    15. 12. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku