A Graph Convolutional Network for Visual Categorization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021806" target="_blank" >RIV/62690094:18450/24:50021806 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-981-97-6489-1_19" target="_blank" >http://dx.doi.org/10.1007/978-981-97-6489-1_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-6489-1_19" target="_blank" >10.1007/978-981-97-6489-1_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Graph Convolutional Network for Visual Categorization
Popis výsledku v původním jazyce
The Convolutional Neural Networks (CNNs) have attained enhanced performance over conventional feature descriptors for image classification. Recently, Graph Convolutional Networks (GCNs) have also been witnessed in achieving improved performances for visual classification in various domains. A typical GCN is pertinent for propagating deep features using graph-based message passing methods. There are several domains such as the disease diagnosis of humans and plants where GCN could be explored for further performance enhancement. Thus, ample research attention is essential for solving different kinds of visual classification problems. In this direction, this work integrates the benefits of CNN and GCN for improving the feature representation by building a spatial relation using a GCN. In this work, a simple deep learning model is proposed that extracts the high-level deep features using a backbone CNN. Then, a GCN is applied for enhancing feature representation capabilities further for image classification. The proposed method has achieved improved performances on seven benchmark public datasets representing dance postures, hand shapes, agriculture, medical imaging, and aerial scene classification. The proposed method is developed using four different CNN backbones. Particularly, the proposed method based on ResNet-50 backbone has attained 89.98% accuracy on Dance-12, 90.34% accuracy on REST hand shape, 94.06% accuracy on Kvasir, and 75.89% accuracy on ISIC skin cancer, 91.73% accuracy on AID aerial scene classification, and 95.24% accuracy on PlantPathology datasets. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Název v anglickém jazyce
A Graph Convolutional Network for Visual Categorization
Popis výsledku anglicky
The Convolutional Neural Networks (CNNs) have attained enhanced performance over conventional feature descriptors for image classification. Recently, Graph Convolutional Networks (GCNs) have also been witnessed in achieving improved performances for visual classification in various domains. A typical GCN is pertinent for propagating deep features using graph-based message passing methods. There are several domains such as the disease diagnosis of humans and plants where GCN could be explored for further performance enhancement. Thus, ample research attention is essential for solving different kinds of visual classification problems. In this direction, this work integrates the benefits of CNN and GCN for improving the feature representation by building a spatial relation using a GCN. In this work, a simple deep learning model is proposed that extracts the high-level deep features using a backbone CNN. Then, a GCN is applied for enhancing feature representation capabilities further for image classification. The proposed method has achieved improved performances on seven benchmark public datasets representing dance postures, hand shapes, agriculture, medical imaging, and aerial scene classification. The proposed method is developed using four different CNN backbones. Particularly, the proposed method based on ResNet-50 backbone has attained 89.98% accuracy on Dance-12, 90.34% accuracy on REST hand shape, 94.06% accuracy on Kvasir, and 75.89% accuracy on ISIC skin cancer, 91.73% accuracy on AID aerial scene classification, and 95.24% accuracy on PlantPathology datasets. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-981-9764-88-4
ISSN
2367-3370
e-ISSN
—
Počet stran výsledku
14
Strana od-do
257-270
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Singapore
Místo konání akce
Aizawl
Datum konání akce
15. 12. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—