Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A deep transfer learning based convolution neural network framework for air temperature classification using human clothing images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F24%3A10256296" target="_blank" >RIV/61989100:27730/24:10256296 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s41598-024-80657-y" target="_blank" >https://www.nature.com/articles/s41598-024-80657-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-024-80657-y" target="_blank" >10.1038/s41598-024-80657-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A deep transfer learning based convolution neural network framework for air temperature classification using human clothing images

  • Popis výsledku v původním jazyce

    Weather recognition is crucial due to its significant impact on various aspects of daily life, such as weather prediction, environmental monitoring, tourism, and energy production. Several studies have already conducted research on image-based weather recognition. However, previous studies have addressed few types of weather phenomena recognition from images with insufficient accuracy. In this paper, we propose a transfer learning CNN framework for classifying air temperature levels from human clothing images. The framework incorporates various deep transfer learning approaches, including DeepLabV3 Plus for semantic segmentation and others for classification such as BigTransfer (BiT), Vision Transformer (ViT), ResNet101, VGG16, VGG19, and DenseNet121. Meanwhile, we have collected a dataset called the Human Clothing Image Dataset (HCID), consisting of 10,000 images with two categories (High and Low air temperature). All the models were evaluated using various classification metrics, such as the confusion matrix, loss, precision, F1-score, recall, accuracy, and AUC-ROC. Additionally, we applied Gradient-weighted Class Activation Mapping (Grad-CAM) to emphasize significant features and regions identified by models during the classification process. The results show that DenseNet121 outperformed other models with an accuracy of 98.13%. Promising experimental results highlight the potential benefits of the proposed framework for detecting air temperature levels, aiding in weather prediction and environmental monitoring.

  • Název v anglickém jazyce

    A deep transfer learning based convolution neural network framework for air temperature classification using human clothing images

  • Popis výsledku anglicky

    Weather recognition is crucial due to its significant impact on various aspects of daily life, such as weather prediction, environmental monitoring, tourism, and energy production. Several studies have already conducted research on image-based weather recognition. However, previous studies have addressed few types of weather phenomena recognition from images with insufficient accuracy. In this paper, we propose a transfer learning CNN framework for classifying air temperature levels from human clothing images. The framework incorporates various deep transfer learning approaches, including DeepLabV3 Plus for semantic segmentation and others for classification such as BigTransfer (BiT), Vision Transformer (ViT), ResNet101, VGG16, VGG19, and DenseNet121. Meanwhile, we have collected a dataset called the Human Clothing Image Dataset (HCID), consisting of 10,000 images with two categories (High and Low air temperature). All the models were evaluated using various classification metrics, such as the confusion matrix, loss, precision, F1-score, recall, accuracy, and AUC-ROC. Additionally, we applied Gradient-weighted Class Activation Mapping (Grad-CAM) to emphasize significant features and regions identified by models during the classification process. The results show that DenseNet121 outperformed other models with an accuracy of 98.13%. Promising experimental results highlight the potential benefits of the proposed framework for detecting air temperature levels, aiding in weather prediction and environmental monitoring.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10700 - Other natural sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Kód UT WoS článku

    001389338200014

  • EID výsledku v databázi Scopus

    2-s2.0-85213727455